Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MLKL-mediated endothelial necroptosis drives vascular damage and mortality in systemic inflammatory response syndrome

Abstract

The hypersecretion of cytokines triggers life-threatening systemic inflammatory response syndrome (SIRS), leading to multiple organ dysfunction syndrome (MODS) and mortality. Although both coagulopathy and necroptosis have been identified as important factors in the pathogenesis of SIRS, the specific cell types that undergo necroptosis and the interrelationships between coagulopathy and necroptosis remain unclear. In this study, we utilized visualization analysis via intravital microscopy to demonstrate that both anticoagulant heparin and nonanticoagulant heparin (NAH) pretreatment protect mice against TNF-α-induced mortality in SIRS. Moreover, the deletion of Mlkl or Ripk3 resulted in decreased coagulation and reduced mortality in TNF-α-induced SIRS. These findings suggest that necroptosis plays a key role upstream of coagulation in SIRS-related mortality. Furthermore, using a genetic lineage tracing mouse model (Tie2-Cre;Rosa26-tdT), we tracked endothelial cells (ECs) and verified that EC necroptosis is responsible for the vascular damage observed in TNF-α-treated mice. Importantly, Mlkl deletion in vascular ECs in mice had a similar protective effect against lethal SIRS by blocking EC necroptosis to protect the integrity of the endothelium. Collectively, our findings demonstrated that RIPK3–MLKL-dependent necroptosis disrupted vascular integrity, resulting in coagulopathy and multiorgan failure, eventually leading to mortality in SIRS patients. These results highlight the importance of targeting vascular EC necroptosis for the development of effective treatments for SIRS patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dinarello CA. Proinflammatory cytokines. Chest. 2000;118:503–8.

    Article  CAS  PubMed  Google Scholar 

  2. Jaffer U, Wade RG, Gourlay T. Cytokines in the systemic inflammatory response syndrome: a review. HSR Proc Intensive Care Cardiovasc Anesth. 2010;2:161–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Makhija R, Kingsnorth AN. Cytokine storm in acute pancreatitis. J Hepatobiliary Pancreat Surg. 2002;9:401–10.

    Article  PubMed  Google Scholar 

  4. Salgado A, et al. Inflammatory mediators and their influence on hemostasis. Hemostasis. 1994;24:132–8.

    CAS  Google Scholar 

  5. Dunzendorfer S, et al. Pentoxifylline differentially regulates migration and respiratory burst activity of the neutrophil. Ann N Y Acad Sci. 1997;832:330–40.

    Article  CAS  PubMed  Google Scholar 

  6. Delvaeye T, et al. Noninvasive whole-body imaging of phosphatidylethanolamine as a cell death marker using 99mTc-duramycin during TNF-induced SIRS. J Nucl Med. 2018;59:1140–5.

    Article  CAS  PubMed  Google Scholar 

  7. Gando S, et al. Activation of the extrinsic coagulation pathway in patients with severe sepsis and septic shock. Crit Care Med. 1998;26:2005–9.

    Article  CAS  PubMed  Google Scholar 

  8. Gando S, et al. A randomized, controlled, multicenter trial of the effects of antithrombin on disseminated intravascular coagulation in patients with sepsis. Crit Care. 2013;17:R297.

    Article  PubMed  PubMed Central  Google Scholar 

  9. van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis. Immunity. 2021;54:2450–64.

    Article  PubMed  Google Scholar 

  10. Ruan Q, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46:846–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mehta P, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marshall JC. Why have clinical trials in sepsis failed? Trends Mol Med. 2014;20:195–203.

    Article  PubMed  Google Scholar 

  13. Li C, et al. The programmed cell death of macrophages, endothelial cells, and tubular epithelial cells in sepsis-AKI. Front Med. 2021;8:796724.

    Article  Google Scholar 

  14. Rangel-Frausto MS, et al. The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA. 1995;273:117–23.

    Article  CAS  PubMed  Google Scholar 

  15. Levi M, van der Poll T. Coagulation and sepsis. Thromb Res. 2017;149:38–44.

    Article  CAS  PubMed  Google Scholar 

  16. Ogura H, et al. Sirs-associated coagulopathy and organ dysfunction in critically Ill patients with thrombocytopenia. Shock. 2007;28:411–7.

    Article  PubMed  Google Scholar 

  17. Esmon CT. Inflammation and thrombosis. J Thromb Hemost. 2003;1:1343–8.

    Article  CAS  Google Scholar 

  18. Gando S, et al. Disseminated intravascular coagulation is a frequent complication of systemic inflammatory response syndrome. Thromb Hemost. 1996;75:224–8.

    Article  CAS  Google Scholar 

  19. Iba T, et al. Coagulopathy in COVID‐19. J Thromb Hemost. 2020;18:2103–9.

    Article  CAS  Google Scholar 

  20. Hadid T, Kafri Z, Al-Katib A. Coagulation and anticoagulation in COVID-19. Blood Rev. 2021;47:100761.

    Article  CAS  PubMed  Google Scholar 

  21. Guo F, et al. Clinical applications of machine learning in the survival prediction and classification of sepsis: coagulation and heparin usage matter. J Transl Med. 2022;20:265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wilson NS, Dixit V, Ashkenazi A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol. 2009;10:348–55.

    Article  CAS  PubMed  Google Scholar 

  23. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114:181–90.

    Article  CAS  PubMed  Google Scholar 

  24. Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science. 2002;296:1634–5.

    Article  CAS  PubMed  Google Scholar 

  25. Chen ZJ. Ubiquitin signaling in the NF-kappaB pathway. Nat Cell Biol. 2005;7:758–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vandenabeele P, et al. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol. 2010;11:700–14.

    Article  CAS  PubMed  Google Scholar 

  27. Bertrand MJM, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell. 2008;30:689–700.

    Article  CAS  PubMed  Google Scholar 

  28. Kovalenko A, et al. The tumor suppressor CYLD negatively regulates NF-kappaB signaling by deubiquitination. Nature. 2003;424:801–5.

    Article  CAS  PubMed  Google Scholar 

  29. Wang L, Du F, Wang X. TNF-α induces two distinct caspase-8 activation pathways. Cell. 2008;133:693–703.

    Article  CAS  PubMed  Google Scholar 

  30. Dickens LS, et al. A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol Cell. 2012;47:291–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murphy JM, et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity. 2013;39:443–53.

    Article  CAS  PubMed  Google Scholar 

  32. Sun L, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148:213–27.

    Article  CAS  PubMed  Google Scholar 

  33. Cai Z, et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol. 2013;16:55–65.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Duprez L, et al. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity. 2011;35:908–18.

    Article  CAS  PubMed  Google Scholar 

  35. Polykratis A, et al. Cutting edge: RIPK1 kinase inactive mice are viable and protected from TNF-induced necroptosis in Vivo. J Immunol. 2014;193:1539–43.

    Article  CAS  PubMed  Google Scholar 

  36. Newton K, et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science. 2014;343:1357–60.

    Article  CAS  PubMed  Google Scholar 

  37. Berger SB, et al. Cutting edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J Immunol. 2014;192:5476–80.

    Article  CAS  PubMed  Google Scholar 

  38. Newton K, et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ. 2016;23:1565–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zelic M, et al. RIP kinase 1–dependent endothelial necroptosis underlies systemic inflammatory response syndrome. J Clin Investig. 2018;128:2064–75.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wu C, et al. Inflammasome activation triggers blood clotting and host death through pyroptosis. Immunity. 2019;50:1401–11.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grover SP, Mackman N. Tissue Factor. Arterioscler Thromb Vasc Biol. 2018;38:709–25.

    Article  CAS  PubMed  Google Scholar 

  42. Fajgenbaum DC, Longo DL, June CH. Cytokine storm. N Engl J Med. 2020;383:2255–73.

    Article  CAS  PubMed  Google Scholar 

  43. Karki R, et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell. 2021;184:149–68.e17.

    Article  CAS  PubMed  Google Scholar 

  44. Wada T, et al. Disseminated intravascular coagulation with increased fibrinolysis during the early phase of isolated traumatic brain injury. Crit Care. 2017;21:219.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kenig M, et al. Identification of the heparin-binding domain of TNF-alpha and its use for efficient TNF-alpha purification by heparin-Sepharose affinity chromatography. J Chromatogr B Anal Technol Biomed Life Sci. 2008;867:119–25.

    Article  CAS  Google Scholar 

  46. Kuschert GS, et al. Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry. 1999;38:12959–68.

    Article  CAS  PubMed  Google Scholar 

  47. Beurskens DMH, et al. The anticoagulant and nonanticoagulant properties of heparin. Thromb Hemost. 2020;120:1371–83.

    Article  Google Scholar 

  48. Tang Y, et al. Heparin prevents caspase-11-dependent septic lethality independent of anticoagulant properties. Immunity. 2021;54:454–67.e6.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang H, et al. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med. 2023;13:e1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chakraborty RK, Burns B. Systemic inflammatory response syndrome. In: StatPearls©. Treasure Island, FL: StatPearls Publishing LLC; 2022.

  51. Gómez-Jiménez J, et al. L-arginine: nitric oxide pathway in endotoxemia and human septic shock. Crit Care Med. 1995;23:253–8.

    Article  PubMed  Google Scholar 

  52. Zhang H, et al. Crucial roles of the RIP homotypic interaction motifs of RIPK3 in RIPK1-dependent cell death and lymphoproliferative disease. Cell Rep. 2020;31:107650.

    Article  CAS  PubMed  Google Scholar 

  53. Zhao Q, et al. RIPK3 mediates necroptosis during embryonic development and postnatal inflammation in Fadd-deficient mice. Cell Rep. 2017;19:798–808.

    Article  CAS  PubMed  Google Scholar 

  54. Tennant M, McGeachie JK. Blood vessel structure and function: a brief update on recent advances. Aust N Z J Surg. 1990;60:747–53.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang S, et al. Seamless genetic recording of transiently activated mesenchymal gene expression in endothelial cells during cardiac fibrosis. Circulation. 2021;144:2004–20.

    Article  CAS  PubMed  Google Scholar 

  56. Zeng W, et al. Effect of drotrecogin alfa (activated) on human endothelial cell permeability and Rho kinase signaling. Crit Care Med. 2004;32:S302–S308.

    Article  CAS  PubMed  Google Scholar 

  57. Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015;517:311–20.

    Article  CAS  PubMed  Google Scholar 

  58. Van Hauwermeiren F, et al. Safe TNF-based antitumor therapy following p55TNFR reduction in intestinal epithelium. J Clin Investig. 2013;123:2590–603.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu Rev Pathol. 2020;15:493–518.

    Article  CAS  PubMed  Google Scholar 

  60. Sturtzel C. Endothelial Cells. Adv Exp Med Biol. 2017;1003:71–91.

  61. Chen A-Q, et al. Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain–barrier disruption after ischemic stroke. Cell Death Dis. 2019;10:487.

    Article  PubMed  Google Scholar 

  62. Bolik J, et al. Inhibition of ADAM17 impairs endothelial cell necroptosis and blocks metastasis. J Exp Med. 2022;219:e20201039.

    Article  CAS  PubMed  Google Scholar 

  63. Yang L, et al. TAK1 regulates endothelial cell necroptosis and tumor metastasis. Cell Death Differ. 2019;26:1987–97.

    Article  CAS  PubMed  Google Scholar 

  64. Wang L, et al. Multi-arm PEG/peptidomimetic conjugate inhibitors of DR6/APP interaction block hematogenous tumor cell extravasation. Adv Sci. 2021;8:e2003558.

    Article  Google Scholar 

  65. Fritsch M, et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature. 2019;575:683–7.

    Article  CAS  PubMed  Google Scholar 

  66. Zou C, et al. Reduction of mNAT1/hNAT2 contributes to cerebral endothelial necroptosis and Aβ accumulation in Alzheimer’s disease. Cell Rep. 2020;33:108447.

    Article  CAS  PubMed  Google Scholar 

  67. Huang W-Y, et al. TNFα-mediated necroptosis in brain endothelial cells as a potential mechanism of increased seizure susceptibility in mice following systemic inflammation. J Neuroinflammation. 2022;19:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fan C, et al. Lack of FADD in Tie-2 expressing cells causes RIPK3-mediated embryonic lethality. Cell Death Dis. 2016;7:e2351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang X, et al. Bacterial endotoxin activates the coagulation cascade through gasdermin D-dependent phosphatidylserine exposure. Immunity. 2019;51:983–96.e6.

    Article  CAS  PubMed  Google Scholar 

  70. Wang J, Kubes P. A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell. 2016;165:668–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Xiaodong Wang (National Institute of Biological Sciences, Beijing, China) for providing Ripk3−/− mice. We also thank Zhonghui Weng (Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences) for animal studies, Lin Qiu (Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences) for flow cytometry technical support, and Yanqing Qin (Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences) for complete blood count analysis.

Funding

This work was supported by grants from the National Key Research and Development Program of China (2022YFA0807300), the National Natural Science Foundation of China (32270803, 32300630, 82272181, T2293734), the Shanghai Excellent Academic/Technical Leader Program (22XD1404500), the Shanghai Science and Technology Commission (23141902800), and the China Postdoctoral Science Foundation (2020M671261). We also acknowledge support from the Shanghai Municipal Science and Technology Major Project and the GuangCi Professorship Program of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine.

Author information

Authors and Affiliations

Authors

Contributions

Xiaoxia Wu and Haibing Zhang designed the study and analyzed the data; Xiaoxia Wu performed all the experiments with assistance from XMZ, FL, YW, YJO, HWZ, XML, XHW, LXW, ML, JLL, MYX, HL, YYW, YYX, and HWZ; YW and JW provided technical support for SD-IVM. YZ and YCT assisted with mouse genotyping and analysis. Yan Luo, LMS, HL, and Yu Li provided resources and intellectual input. Xiaoxia Wu and Haibing Zhang assembled the figure panels and wrote the paper. Haibing Zhang supervised the project.

Corresponding author

Correspondence to Haibing Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All animal experiments were conducted in accordance with the guidelines of the Institutional Animal Care and Use Committee of the Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhao, X., Li, F. et al. MLKL-mediated endothelial necroptosis drives vascular damage and mortality in systemic inflammatory response syndrome. Cell Mol Immunol 21, 1309–1321 (2024). https://doi.org/10.1038/s41423-024-01217-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41423-024-01217-y

Keywords

This article is cited by

Search

Quick links