Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhancing the antibacterial activity and yields of cationic polystyrene particles via copolymerization with hydrophilic acrylate monomers

Abstract

Cationic polymer particles exhibit weak antibacterial activity, and the material properties that influence this activity remain unclear. In this study, we enhanced the antibacterial activity of cationic polystyrene particles by introducing acrylate comonomers through soap-free emulsion polymerization using a cationic radical initiator. Compared with polystyrene emulsions, incorporating acrylate monomers with a lower log P than that of styrene afforded higher yields of cationic polymer particle emulsions. The antibacterial activities of these emulsions against Staphylococcus epidermidis were measured. The highest antibacterial activity was obtained for the acrylate monomer, with a log P of ~1.3. Among the emulsions obtained from acrylate monomers with comparable log P values, those with a lower glass transition temperature (Tg) exhibited higher antibacterial activity. Poly(styrene-co-methylmethacrylate-co-(vinylbenzyl)trimethylammonium chloride), which has a high Tg, demonstrated antibacterial activity against Escherichia coli and Staphylococcus aureus and suppressed the replication of nonenveloped Feline calicivirus. Skin irritation and microbial mutagenicity tests using cultured human skin models were negative. These polymer particles have potential applications as coating agents, base materials in the biomedical field, and hygiene products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature. 2008;451:990–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hou J, Long X, Wang X, Li L, Mao D, Luo Y, et al. Global trend of antimicrobial resistance in common bacterial pathogens in response to antibiotic consumption. J Hazard Mater. 2023;442:130042.

    Article  CAS  PubMed  Google Scholar 

  3. Rhouma M, Madec JY, Laxminarayan R. Colistin: from the shadows to a One Health approach for addressing antimicrobial resistance. Int J Antimicrob Agents. 2023;61:106713.

    Article  CAS  PubMed  Google Scholar 

  4. Hernandez-Montelongo J, Nicastro GG, Pereira TO, Zavarize M, Beppu MM, Macedo WAA, et al. Antibacterial effect of hyaluronan/chitosan nanofilm in the initial adhesion of Pseudomonas aeruginosa wild type, and IV pili and LPS mutant strains. Surf Interfaces. 2021;26:101415.

    Article  CAS  Google Scholar 

  5. Li D, Fang Y, Zhang X. Bacterial detection and elimination using a dual-functional porphyrin-based porous organic polymer with peroxidase-like and high near-infrared-light-enhanced antibacterial activity. ACS Appl Mater Interfaces. 2020;12:8989–99.

    Article  CAS  PubMed  Google Scholar 

  6. Rotem S, Radzishevsky IS, Bourdetsky D, Navon-Venezia S, Carmeli Y, Mor A. Analogous oligo-acyl-lysines with distinct antibacterial mechanisms. FASEB J. 2008;22:2652–61.

    Article  CAS  PubMed  Google Scholar 

  7. Avrahami D, Shai Y. A new group of antifungal and antibacterial lipopeptides derived from non-membrane active peptides conjugated to palmitic acid. J Biol Chem. 2004;279:12277–85.

    Article  CAS  PubMed  Google Scholar 

  8. Ferreyra Maillard APV, Gonçalves S, Santos NC, López de Mishima BA, Dalmasso PR, Hollmann A. Studies on interaction of green silver nanoparticles with whole bacteria by surface characterization techniques. Biochim Biophys Acta Biomembr. 2019;1861:1086–92.

    Article  CAS  PubMed  Google Scholar 

  9. Gabrielyan L, Hovhannisyan A, Gevorgyan V, Ananyan M, Trchounian A. Antibacterial effects of iron oxide (Fe3O4) nanoparticles: distinguishing concentration-dependent effects with different bacterial cells growth and membrane-associated mechanisms. Appl Microbiol Biotechnol. 2019;103:2773–82.

    Article  CAS  PubMed  Google Scholar 

  10. Eid M, Araby E. Bactericidal effect of poly(acrylamide/itaconic acid)-silver nanoparticles synthesized by gamma irradiation against Pseudomonas aeruginosa. Appl Biochem Biotechnol. 2013;171:469–87.

    Article  CAS  PubMed  Google Scholar 

  11. Bai X, Zhang D, Wang Z, Wang F, Zhang Y, He Y, et al. Constructing acrylate copolymer microspheres with anisotropic wrinkled surface for conjugating antibacterial AgNPs. ChemistrySelect. 2023;8:e202204398.

    Article  CAS  Google Scholar 

  12. Yang Y, Cai Z, Huang Z, Tang X, Zhang X. Antimicrobial cationic polymers: from structural design to functional control. Polym J. 2018;50:33–44.

    Article  CAS  Google Scholar 

  13. Guo J, Qin J, Ren Y, Wang B, Cui H, Ding Y, et al. Antibacterial activity of cationic polymers: side-chain or main-chain type? Polym Chem. 2018;9:4611–6.

    Article  CAS  Google Scholar 

  14. Yamamoto T, Arakawa K, Takahashi Y, Sumiyoshi M. Antimicrobial activities of low molecular weight polymers synthesized through soap-free emulsion polymerization. Eur Polym J. 2018;109:532–6.

    Article  CAS  Google Scholar 

  15. Yamamoto T, Arakawa K, Furuta R, Teshima A. Antimicrobial activities of polymers synthesized through soap-free emulsion polymerization using a cationic initiator and styrene derivative monomers. Chem Lett. 2018;47:1402–4.

    Article  CAS  Google Scholar 

  16. Suga K, Murakami M, Nakayama S, Watanabe K, Yamada S, Tsuji T, et al. Surface characteristics of antibacterial polystyrene nanoparticles synthesized using cationic initiator and comonomers. ACS Appl Bio Mater. 2022;5:2202–11.

    Article  CAS  PubMed  Google Scholar 

  17. Xin Q, Shah H, Nawaz A, Xie W, Akram MZ, Batool A, et al. Antibacterial carbon-based nanomaterials. Adv Mater. 2019;31:e1804838.

    Article  PubMed  Google Scholar 

  18. Fritz H, Maier M, Bayer E. Cationic polystyrene nanoparticles: preparation and characterization of a model drug carrier system for antisense oligonucleotides. J Colloid Interface Sci. 1997;195:272–88.

    Article  CAS  PubMed  Google Scholar 

  19. Guo Q, Guo H, Lan T, Chen Y, Chen X, Feng Y, et al. Co-delivery of antibiotic and baicalein by using different polymeric nanoparticle cargos with enhanced synergistic antibacterial activity. Int J Pharm. 2021;599:120419.

    Article  CAS  PubMed  Google Scholar 

  20. Neal AL. What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology. 2008;17:362–71.

    Article  CAS  PubMed  Google Scholar 

  21. Sanches LM, Petri DFS, de Melo Carrasco LD, Carmona-Ribeiro AM. The antimicrobial activity of free and immobilized poly (diallyldimethylammonium) chloride in nanoparticles of poly (methylmethacrylate). J Nanobiotechnology. 2015;13:58.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li X, Gan J, Cao P, Guo W, Wang R, Song P, et al. Preparation of blackberry-shape cationic copolymer particles for highly effective antibacterial coatings. Colloids Surf A Physicochem Eng Asp. 2021;614:126202.

    Article  CAS  Google Scholar 

  23. Lu G, Wu D, Fu R. Studies on the synthesis and antibacterial activities of polymeric quaternary ammonium salts from dimethylaminoethyl methacrylate. React Funct Polym. 2007;67:355–66.

    Article  CAS  Google Scholar 

  24. Pham P, Oliver S, Boyer C. Design of antimicrobial polymers. Macromol Chem Phys. 2023;224:2200226.

    Article  CAS  Google Scholar 

  25. Zhang H, Liu L, Hou P, Pan H, Fu S. Polyisocyanide quaternary ammonium salts with exceptionally star-shaped structure for enhanced antibacterial properties. Polymers. 2022;14:1737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bakhshi H, Agarwal S. Hyperbranched polyesters as biodegradable and antibacterial additives. J Mater Chem B. 2017;5:6827–34.

    Article  CAS  PubMed  Google Scholar 

  27. Aouay M, Magnin A, Putaux JL, Boufi S. Crosslinkable dextrin-coated latex via surfactant-free emulsion polymerization. Colloids Surf A Physicochem Eng Asp. 2022;632:127776.

    Article  CAS  Google Scholar 

  28. Sovadinova I, Palermo EF, Huang R, Thoma LM, Kuroda K. Mechanism of polymer-induced hemolysis: nanosized pore formation and osmotic lysis. Biomacromolecules. 2011;12:260–8.

    Article  CAS  PubMed  Google Scholar 

  29. Phuong PT, Oliver S, He J, Wong EHH, Mathers RT, Boyer C. Effect of hydrophobic groups on antimicrobial and hemolytic activity: developing a predictive tool for ternary antimicrobial polymers. Biomacromolecules. 2020;21:5241–55.

    Article  CAS  PubMed  Google Scholar 

  30. Kanazawa A, Ikeda T, Endo T. Polymeric phosphonium salts as a novel class of cationic biocides. IX. Effect of side-chain length between main chain and active group on antibacterial activity. J Polym Sci A Polym Chem. 1994;32:1997–2001.

    Article  CAS  Google Scholar 

  31. Uchiyama S, Tsuji T, Kawamoto K, Okano K, Fukatsu E, Noro T, et al. A cell-targeted non-cytotoxic fluorescent nanogel thermometer created with an imidazolium-containing cationic radical initiator. Angew Chem Int Ed Engl. 2018;57:5413–7.

    Article  CAS  PubMed  Google Scholar 

  32. Jitsuhiro A, Maeda T, Ogawa A, Yamada S, Konoeda Y, Maruyama H, et al. Contact-killing antibacterial polystyrene polymerized using a quaternized cationic initiator. ACS Omega. 2024;9:9803–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang B, Xu L, Liu Y, Liu B, Zhang M. Preparation of monodisperse polystyrene microspheres with different functional groups using soap-free emulsion polymerization. Colloid Polym Sci. 2021;299:1095–102.

    Article  CAS  Google Scholar 

  34. Lynda B, Pascal D, Jalloul B, Amandine C, Fouzia J, Catherine J, et al. Staphylococcus aureus membrane-damaging activities of four phenolics. FEMS Microbiol Lett. 2021;368:fnab081.

    Article  Google Scholar 

  35. Kojima H, Ando Y, Idehara K, Katoh M, Kosaka T, Miyaoka E, et al. Validation study of the in vitro skin irritation test with the LabCyte EPI-MODEL24. Alter Lab Anim. 2012;40:33–50.

    Article  CAS  Google Scholar 

  36. Vijay U, Gupta S, Mathur P, Suravajhala P, Bhatnagar P. Microbial Mutagenicity Assay: Ames Test. Bio Protoc. 2018;8:e2763.

    PubMed  PubMed Central  Google Scholar 

  37. Mozelewska K, Czech Z, Bartkowiak M, Nowak M, Bednarczyk P, Niezgoda P, et al. Preparation and characterization of acrylic pressure-sensitive adhesives crosslinked with UV radiation-influence of monomer composition on adhesive properties. Mater (Basel). 2021;15:246.

    Article  Google Scholar 

  38. Ju YH, Lee HJ, Han CJ, Lee CR, Kim Y, Kim JW. Pressure-sensitive adhesive with controllable adhesion for fabrication of ultrathin soft devices. ACS Appl Mater Interfaces. 2020;12:40794–801.

    Article  CAS  PubMed  Google Scholar 

  39. Kureha T, Hiroshige S, Matsui S, Suzuki D. Water-immiscible bioinert coatings and film formation from aqueous dispersions of poly(2-methoxyethyl acrylate) microspheres. Colloids Surf B Biointerfaces. 2017;155:166–72.

    Article  CAS  PubMed  Google Scholar 

  40. Mark DG, Robert AS. Comparison of Styrene with Methyl Methacrylate Copolymers on the Adhesive Performance and Peeling Master Curves of Acrylate Pressure Sensitive Adhesives. Macromol Chem Phys. 2005;206:1015–27.

    Article  Google Scholar 

  41. Asua JM. Emulsion polymerization: from fundamental mechanisms to process developments. J Polym Sci A Polym Chem. 2004;42:1025–41.

    Article  CAS  Google Scholar 

  42. Brittin J, Fry MR, Punia A, Johnson KA, Sengupta A. Antibacterial and hemolytic properties of acrylate-based random ternary copolymers comprised of same center cationic, ethyl and poly(oligoethylene glycol) side chains. Eur Polym J. 2020;132:109757.

    Article  CAS  Google Scholar 

  43. Hae Cho CA, Liang C, Perera J, Liu J, Varnava KG, Sarojini V, et al. Molecular weight and charge density effects of guanidinylated biodegradable polycarbonates on antimicrobial activity and selectivity. Biomacromolecules. 2018;19:1389–401.

    Article  CAS  PubMed  Google Scholar 

  44. Tan J, Zhao Y, Hedrick JL, Yang YY. Effects of hydrophobicity on antimicrobial activity, selectivity, and functional mechanism of guanidinium-functionalized polymers. Adv Health Mater. 2022;11:e2100482.

    Article  Google Scholar 

  45. Wang Y, Yang Y, Shi Y, Song H, Yu C. Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives. Adv Mater. 2020;32:e1904106.

    Article  PubMed  Google Scholar 

  46. Morandini A, Leonetti B, Riello P, Sole R, Gatto V, Caligiuri I, et al. Synthesis and antimicrobial evaluation of bis-morpholine triazine quaternary ammonium salts. ChemMedChem. 2021;16:3172–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fukushima K, Kishi K, Saito K, Takakuwa K, Hakozaki S, Yano S. Modulating bioactivities of primary ammonium-tagged antimicrobial aliphatic polycarbonates by varying length, sequence and hydrophobic side chain structure. Biomater Sci. 2019;7:2288–96.

    Article  CAS  PubMed  Google Scholar 

  48. Xue Y, Xiao H. Characterization and antipathogenic evaluation of a novel quaternary phosphonium tripolyacrylamide and elucidation of the inactivation mechanisms. J Biomed Mater Res A. 2016;104:747–57.

    Article  CAS  PubMed  Google Scholar 

  49. Paulina DR, Mariavitalia T, Nilofar F, Claire B, Yiwen P, Andrew JP, et al. Antiviral surfaces and coatings and their mechanisms of action. Commun Mater. 2021;2:53.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Takashi Yamazaki, Mr. Hiroki Maruyama, and Mrs. Sayuri Yamada (Kirin Holdings Co., Ltd.) for their valuable discussions.

Funding

This study did not receive specific grants from public, commercial, or nonprofit funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

Yuki Konoeda: Conceptualization, Investigation, Writing - Original draft preparation; Toshikazu Tsuji: Writing - Original draft preparation, Writing - Review and Editing, Supervision, Project administration.

Corresponding author

Correspondence to Toshikazu Tsuji.

Ethics declarations

Conflict of interest

Yuki Konoeda and Toshikazu Tsuji are employed by Kirin Holdings Company Ltd.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konoeda, Y., Tsuji, T. Enhancing the antibacterial activity and yields of cationic polystyrene particles via copolymerization with hydrophilic acrylate monomers. Polym J 57, 553–565 (2025). https://doi.org/10.1038/s41428-024-01013-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41428-024-01013-5

Search

Quick links