Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Rheo-optical and micromechanical analysis of viscoelastic properties in inhomogeneous systems: component contributions in a water-swellable microgel/hydrophobically modified ethoxylated urethane mixture

Abstract

We investigated the rheological behavior of mixtures of microgel particle (Hereinafter referred to as MGP) dispersions and aqueous solutions of hydrophobically modified ethoxylated urethane (Hereinafter referred to as HEUR), which are high-performance polymeric thickeners. Despite their intrinsic immiscibility and phase separation, the combination of MGP and HEUR produced a synergistic increase in the complex modulus and notable changes in relaxation behavior. Dynamic viscoelastic and rheo-optical (dynamic birefringence) measurements revealed that the addition of a small amount of HEUR to MGP dispersions significantly increased the modulus values and shifted the maximum relaxation frequency to lower values. The application of the modified stress optical rule (MSOR) enabled separation of the elastic moduli of the MGP and HEUR components, confirming that HEUR preferentially localizes between MGPs, counterbalances MGP-specific concentration fluctuations and induces cooperative relaxation in the MGP phase. Micromechanical modeling, combined with a parallel model incorporating connected HEUR domains, reproduced the slow HEUR relaxation and MGP deformation behavior, highlighting stress coupling between the two phases as the origin of the retarded relaxation—without requiring specific interactions such as chain entanglement. This study reports that combined rheological and rheo-optical analysis, supported by micromechanical modeling, provides insight into the viscoelastic behavior and structural organization of immiscible thickener mixtures, with implications for designing high-performance formulations such as cosmetics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lochhead, RY. In Cosmetic Nanotechnology: Polymers and Colloids in Cosmetics Vol. 961 ACS Symposium Series (eds SE Morgan, KO Havelka, & RY Lochhead) 3-56 (Amer Chemical Soc, 2007).

  2. Lochhead RY, Davidson JA, Thomas GM. Poly(acrylic acid) thickeners - the importance of gel microrheology and evaluation of hydrophobically modified derivatives as emulsifiers. Adv Chem Ser 1989;113–47.

  3. English RJ, Gulati HS, Jenkins RD, Khan SA. Solution rheology of a hydrophobically modified alkali-soluble associative polymer. J Rheol. 1997;41:427–44.

    Article  CAS  Google Scholar 

  4. Reuvers AJ. Control of rheology of water-borne paints using associative thickeners. Prog Org Coat. 1999;35:171–81.

    Article  CAS  Google Scholar 

  5. Larson RG, Van Dyk AK, Chatterjee T, Ginzburg VV. Associative thickeners for waterborne paints: structure, characterization, rheology, and modeling. Prog Polym Sci. 2022;129:101546.

  6. Nishinari K. Texture and rheology in food and health. Food Sci Technol Res. 2009;15:99–106.

    Article  CAS  Google Scholar 

  7. Pirsa S, Hafezi K. Hydrocolloids: Structure, preparation method, and application in food industry. Food Chem. 2023;399:133967.

    Article  CAS  Google Scholar 

  8. Ketz RJ, Prudhomme RK, Graessley WW. Rheology of concentrated microgel solutions. Rheol Acta. 1988;27:531–9.

    Article  CAS  Google Scholar 

  9. Kiefer J, Naser M, Kamel A, Carnali J. Osmotic deswelling of microgels by linear polyelectrolytes. Colloid Polym Sci. 1993;271:253–61.

    Article  CAS  Google Scholar 

  10. Urayama K, Saeki T, Cong S, Uratani S, Takigawa T, Murai M, et al. A simple feature of yielding behavior of highly dense suspensions of soft micro-hydrogel particles. Soft Matter. 2014;10:9486–95.

    Article  CAS  Google Scholar 

  11. van der Vaart K, Rahmani Y, Zargar R, Hu Z, Bonn D, Schall P. Rheology of concentrated soft and hard-sphere suspensions. J Rheol. 2013;57:1195–209.

    Article  Google Scholar 

  12. Wolfe MS. Dispersion and solution rheology control with swellable microgels. Prog Org Coat. 1992;20:487–500.

    Article  CAS  Google Scholar 

  13. Nae HN, Reichert WW. Rheological properties of lightly cross-linked carboxy copolymers in aqueous-solutions. Rheol Acta. 1992;31:351–60.

    Article  CAS  Google Scholar 

  14. Kaneda I, Yanaki T. Rheology of agar microgel dispersion. J Soc Rheol Jpn. 2002;30:89–94.

    Article  Google Scholar 

  15. Kwok MH, Sun GQ, Ngai T. Microgel particles at interfaces: phenomena, principles, and opportunities in food sciences. Langmuir. 2019;35:4205–17.

    Article  CAS  Google Scholar 

  16. Kaneda I, Sogabe A, Nakajima H. Water-swellable polyelectrolyte microgels polymerized in an inverse microemulsion using a nonionic surfactant. J Colloid Interface Sci. 2004;275:450–7.

    Article  CAS  PubMed  Google Scholar 

  17. Kaneda I, Sogabe A. Rheological properties of water swellable microgel polymerized in a confined space. Colloids Surf a-Physicochem Eng Asp. 2005;270:163–70.

    Article  Google Scholar 

  18. Kaneda I. The yield stress of a soft and water swellable microgel aqueous suspension in semi-dilute regime. Nihon Reoroji Gakkaishi. 2006;34:77–81.

    Article  CAS  Google Scholar 

  19. Kaneda I, Sogabe A, Nakajima H. Polymerization of water-swellable microgel by novel inverse microemulsion polymerization and its application as a viscosity thickener for cosmetics. J Soc Cosmet Chem Jpn. 2005;39(4):282–9.

    Article  CAS  Google Scholar 

  20. Annable T, Buscall R, Ettelaie R, Whittlestone D. The rheology of solutions of associating polymers - comparison of experimental behavior with transient network theory. J Rheol. 1993;37:695–726.

    Article  CAS  Google Scholar 

  21. Annable T, Buscall R, Ettelaie R, Shepherd P, Whittlestone D. Influence of surfactants on the rheology of associating polymers in solution. Langmuir. 1994;10:1060–70.

    Article  CAS  Google Scholar 

  22. Yekta A, Duhamel J, Brochard P, Adiwidjaja H, Winnik MA. A fluorescent-probe study of micelle-like cluster formation in aqueous-solutions of hydrophobically modified poly(ethylene oxide). Macromolecules. 1993;26:1829–36.

    Article  CAS  Google Scholar 

  23. Tanaka F, Edwards SF. Viscoelastic-properties-of-physically-crosslinked-networks-1-transient-network-theory. Macromolecules. 1992;25:1516–23.

    Article  CAS  Google Scholar 

  24. Elliott P, Xing L, Wetzel W, Glass J. Influence of terminal hydrophobe branching on the aqueous solution behavior of model hydrophobically modified ethoxylated urethane associative thickeners. Macromolecules. 2003;36:8449–60.

    Article  CAS  Google Scholar 

  25. Yoshida K, Nakamura A, Nakajima Y, Fukuhara T, Inoue H, Kaneda I. Use of associating polymers as multifunctional thickeners: studies of their structure in aqueous solutions via NMR, QELS, fluorescence, and rheology measurements. IFSCC Mag. 2007;10:35–37.

    CAS  Google Scholar 

  26. Shinoda K, Kunieda H. Conditions to produce so-called microemulsions - factors to increase mutual solubility of oil and water by solubilizer. J Colloid Interface Sci. 1973;42:381–7.

    Article  CAS  Google Scholar 

  27. Sogabe, A. In Gel Innovation-Creating New Functions Through Molecular Design and Their Applications- (ed Japan The Society of Polymer Science) 209–46 (NTS, 2008).

  28. Shangwei L, Urakawa O, Inoue T. Rheo-optical study on the viscoelastic relaxation modes of a microgel particle suspension around the liquid–solid transition regime. Macromolecules. 2021;54:3270–80.

    Article  CAS  Google Scholar 

  29. Hayashi C, Inoue T. An apparatus for dynamic birefringence measurement under oscillatory shear flow using an oblique laser beam. Nihon Reoroji Gakkaishi. 2009;37:205–10.

    Article  CAS  Google Scholar 

  30. Iwawaki H, Inoue T, Nakamura Y. Rheo-optical study on dynamics of bottlebrush-like polymacromonomer consisting of polystyrene. Macromolecules. 2011;44:5414–9.

    Article  CAS  Google Scholar 

  31. Janeschitz-Kriegl, H Polymers - properties and applications, VOL 6 - Polymer melt rheology and flow birefringence. 1983 80.

  32. Inoue T, Okamoto H, Osaki K. birefringence of amorphous polymers .1. dynamic measurement on polystyrene. Macromolecules. 1991;24:5670–5.

    Article  CAS  Google Scholar 

  33. Eshelby JD. The determination of the elastic field of an ellipsoidalinclusion, and related problems. Proc R Soc Lond Ser A, Math Phys Sci. 1957;241(1226):376–96.

    Google Scholar 

  34. Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Met. 1973;21:571–4.

    Article  Google Scholar 

  35. KERNER E. The elastic and thermo-elastic properties of composite media. Proc Phys Soc Lond Sect B. 1956;69:808–13.

    Article  Google Scholar 

  36. Wu Y-P, Jia Q-X, Yu D-S, Zhang L-Q. Modeling Young’s modulus of rubber–clay nanocomposites using composite theories. Polym Test. 2004;23:903–9.

    Article  CAS  Google Scholar 

  37. Vannan E, Vizhian P. Prediction of the elastic properties of short basalt fiber reinforced Al alloy metal matrix composites. J Min Mater Charact Eng. 2014;02:61–69.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Inoue.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, A., Yamazaki, K., Katashima, T. et al. Rheo-optical and micromechanical analysis of viscoelastic properties in inhomogeneous systems: component contributions in a water-swellable microgel/hydrophobically modified ethoxylated urethane mixture. Polym J (2025). https://doi.org/10.1038/s41428-025-01113-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41428-025-01113-w

Search

Quick links