Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Halobacin, a herbicidal acyloin derivative from a marine bacterium of the genus Halobacillus

Abstract

Halobacin (1), a new glycosylated acyloin derivative, was isolated from the fermentation broth of a coral-associated bacterium Halobacillus sp. DUNA-S15. The structure of 1 was determined based on NMR and MS analyses and the absolute configuration of the sugar moiety was determined by diastereomeric HPLC separation using chiral derivatization. Compound 1 was inactive in antimicrobial and cytotoxicity assays but suppressed the root growth of germinated seeds of lettuce and barnyard millet to ca 30% at 1 µg ml−1 and ca 70% at 10 µg ml−1 compared to the nontreated seeds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

References

  1. Gulder TA. Chasing the treasures of the sea—bacterial marine natural products. Curr Opin Microbiol. 2009;12:252–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hossain MB, van der Helm D, Antel J, Sheldrick GM, Sanduja SK, Weinheimer AJ. Crystal and molecular structure of didemnin B, an antiviral and cytotoxic depsipeptide. Proc Natl Acad Sci USA. 1988;85:4118–4122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tsukimoto M, Nagaoka M, Shishido Y, Fujimoto J, Nishisaka F, Matsumoto S, Harunari E, Imada C, Matsuzaki T. Bacterial production of the tunicate-derived antitumor cyclic depsipeptide didemnin B. J Nat Prod. 2011;74:2329–2331.

    Article  CAS  PubMed  Google Scholar 

  4. Rizzo C, Lo Giudice A. Marine invertebrates: underexplored sources of bacteria producing biologically active molecules. Diversity. 2018;10:52.

    Article  CAS  Google Scholar 

  5. Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY. Coral and coral-associated microorganisms: a prolific source of potential bioactive natural products. Mar Drugs. 2019;17:468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Raimundo I, Silva SG, Costa R, Keller-Costa T. Bioactive secondary metabolites from octocoral-associated microbes—new chances for blue growth. Mar Drugs. 2018;16:485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Karim MRU, Harunari E, Oku N, Akasaka K, Igarashi Y. Bulbimidazoles A–C, antimicrobial and cytotoxic alkanoyl imidazoles from a marine gammaproteobacterium Microbulbifer species. J Nat Prod. 2020;83:1295–1299.

    Article  PubMed  Google Scholar 

  8. Lu S, Zhang Z, Sharma AR, Nakajima-Shimada J, Harunari E, Oku N, Trianto A, Igarashi Y. Bulbiferamide, an antitrypanosomal hexapeptide cyclized via an N-acylindole linkage from a marine obligate Microbulbifer. J Nat Prod. 2023;86:1081–1086.

    Article  CAS  PubMed  Google Scholar 

  9. Karim MRU, Fukaya K, In Y, Sharma AR, Harunari E, Oku N, Urabe D, Trianto A, Igarashi Y. Marinoquinolones and marinobactoic acid: antimicrobial and cytotoxic ortho-dialkylbenzene-class metabolites produced by a marine obligate gammaproteobacterium of the genus Marinobacterium. J Nat Prod. 2022;85:1763–1770.

    Article  Google Scholar 

  10. Vos PD, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB Bergey’s manual of systematic bacteriology. 2nd ed. 3. Dordrecht: Springer; 2009. 164–8.

  11. Chiu JMY, Li S, Li A, Po B, Zhang R, Shin PKS, Qiu JW. Bacteria associated with skeletal tissue growth anomalies in the coral Platygyra carnosus. FEMS Microbiol Ecol. 2012;79:380–91.

    Article  CAS  PubMed  Google Scholar 

  12. Dictionary of Natural Products. https://dnp.chemnetbase.com/chemical/ChemicalSearch.xhtml?dswid=1560. Accessed 19 Feb 2025.

  13. Osawa A, Ishii Y, Sasamura N, Morita M, Kocher S, Muller V, Sandmann G, Shindo K. Hydroxy-3,4-dehydro-apo-8-lycopene and methylhydroxy-3,4-dehydro-apo-8′-lycopenoate, novel C30 carotenoids produced by a mutant of marine bacterium Halobacillus halophilus. J Antibiot. 2010;63:291–5.

    Article  CAS  Google Scholar 

  14. Yang L, Tan RX, Wang Q, Huang W, Yin Y. Antifungal cyclopeptides from Halobacillus litoralis YS3106 of marine origin. Tetrahedron Lett. 2002;43:6545–6548.

    Article  CAS  Google Scholar 

  15. Teasdale ME, Liu J, Wallace J, Akhlaghi F, Rowley DC. Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Appl Environ Microbiol. 2009;75:567–72.

    Article  CAS  PubMed  Google Scholar 

  16. Nalini S, Inbakandan D, Venkatnarayanan S, Mohammed Riyaz SU, Dheenan PS, Vinithkumar NV, Sriyutha Murthy P, Parthasarathi R, Kirubagaran R. PYRROLO isolated from marine sponge associated bacterium Halobacillus kuroshimensis SNSAB01 –antifouling study based on molecular docking, diatom adhesion and mussel byssal thread inhibition. Colloids Surf B Biointerfaces. 2019;173:9–17.

    Article  CAS  PubMed  Google Scholar 

  17. Pretsch E, Bühlmann P, Affolter C Structure determination of organic compounds—Tables of spectra data. Springer, Berlin, 2000. 236

  18. Roslund MU, Klika KD, Lehtilä RL, Tähtinen P, Sillanpää R, Leino R. Conformation of the galactose ring adopted in solution and in crystalline form as determined by experimental and DFT 1H NMR and single-crystal X-ray analysis. J Org Chem. 2004;69:18–25.

    Article  CAS  PubMed  Google Scholar 

  19. Tanaka T, Nakashima T, Ueda T, Tomii K, Kouno I. Facile discrimination of aldose enantiomers by reversed-phase HPLC. Chem Pharm Bull. 2007;55:899–901.

    Article  CAS  Google Scholar 

  20. Lampis G, Deidda D, Maullu C, Madeddu MA, Pompei R, Monache FD. Sattabacins and sattazolins: new biologically active compounds with antiviral properties extracted from a Bacillus sp. J Antibiot. 1995;48:967–972.

    Article  CAS  Google Scholar 

  21. Park JS, Kagaya N, Hashimoto J, Izumikawa M, Yabe S, Shin-ya K, Nishiyama M, Kuzuyama T. Identification and biosynthesis of new acyloins from the thermophilic bacterium Thermosporothrix hazakensis SK20-1T. ChemBioChem. 2014;15:527–532.

    Article  CAS  PubMed  Google Scholar 

  22. Park HB, Kim YJ, Lee JK, Lee KR, Kwon HC. Spirobacillenes A and B, unusual spiro-cyclopentenones from Lysinibacillus fusiformis KMC003. Org Lett. 2012;14:5002–5005.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Igarashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raji, M.M.A., Triningsih, D.W., Trianto, A. et al. Halobacin, a herbicidal acyloin derivative from a marine bacterium of the genus Halobacillus. J Antibiot 78, 569–572 (2025). https://doi.org/10.1038/s41429-025-00842-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41429-025-00842-7

This article is cited by

Search

Quick links