Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bioinformatics-driven discovery of skin microbiota bacteriocins as potential antibiotics and probiotics

Abstract

The human skin microbiota, comprising a diverse range of microorganisms, including bacteria, viruses, and fungi, plays an important role in maintaining skin health and protecting against pathogenic invasions. Among these microorganisms, certain bacteria produce bacteriocins, which are ribosomal peptides with potent antimicrobial properties. This study presents a novel computational approach to identify and predict bacteriocins from microbial genomes comprising sebaceous region of the skin, aiming to explore their therapeutic potential. Through genome analysis using advanced bioinformatics tools, we identified potential genes, operons, open reading frames (ORFs), and promoter regions linked to bacteriocin production. The BAGEL4 platform was employed to detect structural bacteriocin genes, while modelling bacterial growth and bacteriocin expression under various environmental conditions was conducted using MATLAB’s SimBiology application. The results revealed the optimal conditions for bacteriocin production and highlighted promising candidates for further experimental validation. These findings underscore the significance of skin microbiota as a source of novel bacteriocins, offering potential alternatives to traditional antibiotics amidst rising antimicrobial resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://www.ncbi.nlm.nih.gov/genome/

  2. http://www.cbrc.kaust.edu.sa/btssfinder/

  3. http://www.p2cs.org

  4. http://ggdc.dsmz.de/

  5. http://bactibase.hammamilab.org/main.php

References

  1. Tozzo P, D’angiolella G, Brun P, Castagliuolo I, Gino S, Caenazzo L. Skin microbiome analysis for forensic human identification: what do we know so far? Microorganisms. 2020;8:873. https://doi.org/10.3390/microorganisms8060873.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Timm CM, Loomis K, Stone W, Mehoke T, Brensinger B, Pellicore M, Staniczenko P, Charles C, Nayak S, Karig DK. Isolation and characterization of diverse microbial representatives from the human skin microbiome. Microbiome. 2020;8:1–2. https://doi.org/10.1186/s40168-020-00831-y.

    Article  CAS  Google Scholar 

  3. Grice EA. The intersection of microbiome and host at the skin interface: genomic-and metagenomic-based insights. Genome Res. 2015;25:1514–20. https://doi.org/10.1101/gr.191320.115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16:143–55. https://doi.org/10.1038/nrmicro.2017.157.

    Article  PubMed  CAS  Google Scholar 

  5. Cotter PD, Ross RP, Hill C. Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol. 2013;11:95–105. https://doi.org/10.1038/nrmicro2937.

    Article  PubMed  CAS  Google Scholar 

  6. Zheng J, Gänzle MG, Lin XB, Ruan L, Sun M. Diversity and dynamics of bacteriocins from human microbiome. Environ Microbiol. 2015;17:2133–43. https://doi.org/10.1111/1462-2920.12662.

    Article  PubMed  CAS  Google Scholar 

  7. Radaic A, de Jesus MB, Kapila YL. Bacterial anti-microbial peptides and nano-sized drug delivery systems: the state of the art toward improved bacteriocins. J Control Release. 2020;321:100–18. https://doi.org/10.1016/j.jconrel.2020.02.001.

    Article  PubMed  CAS  Google Scholar 

  8. Simons A, Alhanout K, Duval RE. Bacteriocins, antimicrobial peptides from bacterial origin: overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms. 2020;8:639. https://doi.org/10.3390/microorganisms8050639.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Nes IF. History, current knowledge, and future directions on bacteriocin research in lactic acid bacteria. Prokaryotic antimicrobial peptides: from genes to applications. 2011 Jan 28:3–12. https://doi.org/10.1007/978-1-4419-7692-5_1

  10. Hegarty JW, Guinane CM, Ross RP, Hill C, Cotter PD. Bacteriocin production: a relatively unharnessed probiotic trait? F1000Res. 2016;5. https://doi.org/10.12688/f1000research.9615.1

  11. Gillor O, Etzion A, Riley MA. The dual role of bacteriocins as anti-and probiotics. Appl Microbiol Biotechnol. 2008;81:591–606. https://doi.org/10.1007/s00253-008-1726-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Deegan LH, Cotter PD, Hill C, Ross P. Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J. 2006;16:1058–71. https://doi.org/10.1016/j.idairyj.2005.10.026.

    Article  CAS  Google Scholar 

  13. Legrand TP, Wynne JW, Weyrich LS, Oxley AP. A microbial sea of possibilities: current knowledge and prospects for an improved understanding of the fish microbiome. Rev Aquac. 2020;12:1101–34. https://doi.org/10.1111/raq.12375.

    Article  Google Scholar 

  14. Ogasawara M, Matsuhisa T, Kondo T, Sato J. Clinical characteristics of Corynebacterium simulans. Nagoya J Med Sci. 2021;83:269.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Lynch D, O’Connor PM, Cotter PD, Hill C, Field D, Begley M. Identification and characterisation of capidermicin, a novel bacteriocin produced by Staphylococcus capitis. PLoS ONE. 2019;14:e0223541 https://doi.org/10.1371/journal.pone.0223541.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Fujimura S, Nakamura T. Purification and properties of a bacteriocin-like substance (acnecin) of oral Propionibacterium acnes. Antimicrob Agents Chemother. 1978;14:893–8. https://doi.org/10.1128/AAC.14.6.893.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chemao-Elfihri MW, Hakmi M, Abbou H, Kartti S, Fahime EE, Belyamani L, Boutayeb S. Staphylococcus hominis as a source of antimicrobial peptides: identification of a new peptide with potential antimicrobial properties using in silico approach. Arch Microbiol. 2025;207:1–5. https://doi.org/10.1007/s00203-025-04323-1.

    Article  CAS  Google Scholar 

  18. Garcia-Gutierrez E, Walsh CJ, Sayavedra L, Diaz-Calvo T, Thapa D, Ruas-Madiedo P, Mayer MJ, Cotter PD, Narbad A. Genotypic and phenotypic characterization of fecal Staphylococcus epidermidis isolates suggests plasticity to adapt to different human body sites. Front Microbiol. 2020;11:688. https://doi.org/10.3389/fmicb.2020.00688.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Borralho J, Handem S, Lança J, Ferreira B, Candeias C, Henriques AO, Hiller NL, Valente C, Sá-Leão R. Inhibition of pneumococcal growth and biofilm formation by human isolates of Streptococcus mitis and Streptococcus oralis. Appl Environ Microbiol. 2025;91:e01336–24. https://doi.org/10.1128/aem.01336-24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Garlet A, Andre-Frei V, Del Bene N, Cameron HJ, Samuga A, Rawat V, Ternes P, Leoty-Okombi S. Facial skin microbiome composition and functional shift with aging. Microorganisms. 2024;12:1021. https://doi.org/10.3390/microorganisms12051021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ahmed N, Joglekar P, Deming C, NISC Comparative Sequencing Program, Lemon KP, Kong HH, Segre JA, Conlan S. Genomic characterization of the C. tuberculostearicum species complex, a prominent member of the human skin microbiome. Msystems. 2023;8:e00632–23. https://doi.org/10.1128/msystems.00632-23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lefèvre CR, Pelletier R, Le Monnier A, Corvec S, Bille E, Potron A, Fihman V, Farfour E, Amara M, Degand N, Barraud O. Clinical relevance and antimicrobial susceptibility profile of the unknown human pathogen Corynebacterium aurimucosum. J Med Microbiol. 2021;70:001334.

    Article  Google Scholar 

  23. Gladysheva IV, Chertkov KL, Cherkasov SV, Khlopko YA, Kataev VY, Valyshev AV. Probiotic potential, safety properties, and antifungal activities of Corynebacterium amycolatum ICIS 9 and Corynebacterium amycolatum ICIS 53 strains. Probiotics Antimicrob Proteins. 2023;15:588–600. https://doi.org/10.3390/microorganisms10020249.

    Article  PubMed  CAS  Google Scholar 

  24. Elalem NM, Shawky RM, Bahy R, Boselia AA, Emara M. The diversity of bacteriocin and its antiviral potential: an overview. Egypt J Med Microbiol. 2021;30:175–80. https://doi.org/10.21608/EJMM.2021.203649.

    Article  Google Scholar 

  25. Teber R, Asakawa S. In silico screening of bacteriocin gene clusters within a set of marine Bacillota genomes. Int J Mol Sci. 2024;25:2566 https://doi.org/10.3390/ijms25052566.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Smythe P, Wilkinson HN. The skin microbiome: current landscape and future opportunities. Int J Mol Sci. 2023;24:3950.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Severn MM, Horswill AR. Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nat Rev Microbiol. 2023;21:97–111. https://doi.org/10.1038/s41579-022-00780-3.

    Article  PubMed  CAS  Google Scholar 

  28. Shang L, Deng D, Roffel S, Gibbs S. Differential influence of Streptococcus mitis on host response to metals in reconstructed human skin and oral mucosa. Contact Dermat. 2020;83:347–60. https://doi.org/10.1111/cod.13668.

    Article  CAS  Google Scholar 

  29. Salamov VS, Solovyev A. Automatic annotation of microbial genomes and metagenomic sequences. In: Li, RW, editor. Metagenomics and its applications in agriculture, biomedicine and environmental studies. Nova Science Publishers; 2011. p 61–78.

  30. Shahmuradov IA, Mohamad Razali R, Bougouffa S, Radovanovic A, Bajic VB. bTSSfinder: a novel tool for the prediction of promoters in cyanobacteria and Escherichia coli. Bioinformatics. 2017;33:334–40. https://doi.org/10.1093/bioinformatics/btw629.

    Article  PubMed  CAS  Google Scholar 

  31. Barakat M, Ortet P, Whitworth DE. P2CS: a database of prokaryotic two-component systems. Nucleic Acids Res. 2011;39:D771–6. https://doi.org/10.1093/nar/gkq1023.

    Article  PubMed  CAS  Google Scholar 

  32. Behr S, Fried L, Jung K. Identification of a novel nutrient-sensing histidine kinase/response regulator network in Escherichia coli. J Bacteriol. 2014;196:2023.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Auch AF, Klenk HP, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genom Sci. 2010;2:142–8. https://doi.org/10.4056/sigs.541628.

    Article  Google Scholar 

  34. Tian T, Song J Mathematical modelling of the MAP kinase pathway using proteomic datasets. https://doi.org/10.1371/journal.pone.0042230.

  35. Dréno B, Pécastaings S, Corvec S, Veraldi S, Khammari A, Roques C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J Eur Acad Dermatol Venereol. 2018;32:5–14. https://doi.org/10.1111/jdv.15043.

    Article  PubMed  Google Scholar 

  36. Yaacob MF, Murata A, Nor NH, Jesse FF, Yahya MF. Biochemical composition, morphology and antimicrobial susceptibility pattern of Corynebacterium pseudotuberculosis biofilm. J King Saud Univ Sci. 2021;33:101225. https://doi.org/10.1016/j.jksus.2020.10.022.

    Article  Google Scholar 

  37. Kloos WE, Schleifer KH. Isolation and characterization of staphylococci from human skin II. Descriptions of four new species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans. Int J Syst Evolut Microbiol. 1975;25:62–79. https://doi.org/10.1099/00207713-25-1-62.

    Article  CAS  Google Scholar 

  38. Benjamín C, Luis P, Fernando CL. Modeling the effects of pH variation and bacteriocin synthesis on bacterial growth. Appl Math Model. 2022;110:285–97. https://doi.org/10.1016/j.apm.2022.05.014.

    Article  Google Scholar 

  39. Torres MD, Cao J, Franco OL, Lu TK, de la Fuente-Nunez C. Synthetic biology and computer-based frameworks for antimicrobial peptide discovery. ACS Nano. 2021;15:2143–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Giménez-Palomares F, Fernández de Córdoba P, Mejuto JC, Bendaña-Jácome RJ, Pérez-Guerra N. Evaluation and mathematical analysis of a four-dimensional lotka–volterra-like equation designed to describe the batch nisin production system. Mathematics. 2022;10:677 https://doi.org/10.3390/math10050677.

    Article  Google Scholar 

  41. Martínez-Miranda JG, Chairez I, Durán-Páramo E. Mathematical modeling characterization of mannitol production by three heterofermentative lactic acid bacteria. Food Bioprod Process. 2022;135:11–32. https://doi.org/10.1016/j.fbp.2022.06.003.

    Article  CAS  Google Scholar 

  42. Zheng Y, Szustakowski JD, Fortnow L, Roberts RJ, Kasif S. Computational identification of operons in microbial genomes. Genome Res. 2002;12:1221–30. https://doi.org/10.1101/gr.200602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sleator RD. An overview of the current status of eukaryote gene prediction strategies. Gene. 2010;461:1–4. https://doi.org/10.1016/j.gene.2010.04.008.

    Article  PubMed  CAS  Google Scholar 

  44. Mir K, Neuhaus K, Scherer S, Bossert M, Schober S. Predicting statistical properties of open reading frames in bacterial genomes. https://doi.org/10.1371/journal.pone.0045103.

  45. Rangannan V, Bansal M. High-quality annotation of promoter regions for 913 bacterial genomes. Bioinformatics. 2010;26:3043–50. https://doi.org/10.1093/bioinformatics/btq577.

    Article  PubMed  CAS  Google Scholar 

  46. Jung K, Fried L, Behr S, Heermann R. Histidine kinases and response regulators in networks. Curr Opin Microbiol. 2012;15:118–24. https://doi.org/10.1016/j.mib.2011.11.009.

    Article  PubMed  CAS  Google Scholar 

  47. Wang S. Bacterial two-component systems: structures and signaling mechanisms. Protein Phosphorylation Hum health. 2012;1:439–66. https://doi.org/10.5772/48277.

    Article  Google Scholar 

  48. Martínez B, Rodríguez A, Suárez E. Antimicrobial peptides produced by bacteria: the bacteriocins. New weapons to control bacterial growth. 2016:15–38. https://doi.org/10.1007/978-3-319-28368-5_2.

  49. Christensen GJ, Brüggemann H. Bacterial skin commensals and their role as host guardians. Benef Microbes. 2014;5:201–15. https://doi.org/10.3920/BM2012.0062.

    Article  PubMed  CAS  Google Scholar 

  50. Puls JS, Winnerling B, Power JJ, Krüger AM, Brajtenbach D, Johnson M, Bilici K, Camus L, Fließwasser T, Schneider T, Sahl HG. Staphylococcus epidermidis bacteriocin A37 kills natural competitors with a unique mechanism of action. ISME J. 2024;18:wrae044. https://doi.org/10.1093/ismejo/wrae044.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Li Y, Wu Y, Peng Z, Long L, Guo Q, Tian L, He Z, Xiang S, Kang Y, Guan T. Isolation and identification of bacteriocin-producing lactic acid bacteria from Daqu and mining of bacteriocin gene. Biologia. 2024;79:2891–905. https://doi.org/10.1007/s11756-024-01746-x.

    Article  CAS  Google Scholar 

  52. Daba GM, Ishibashi N, Gong X, Taki H, Yamashiro K, Lim YY, Zendo T, Sonomoto K. Characterisation of the action mechanism of a Lactococcus-specific bacteriocin, lactococcin Z. J Biosci Bioeng. 2018;126:603–10. https://doi.org/10.1016/j.jbiosc.2018.05.018.

    Article  PubMed  CAS  Google Scholar 

  53. Xu Z, Yang Q, Zhu Y. Transcriptome analysis reveals the molecular mechanisms of the novel Lactobacillus pentosus pentocin against Bacillus cereus. Food Res Int. 2022;151:110840. https://doi.org/10.1016/j.foodres.2021.110840.

    Article  PubMed  CAS  Google Scholar 

  54. Gu Q, Yan J, Lou Y, Zhang Z, Li Y, Zhu Z, Liu M, Wu D, Liang Y, Pu J, Zhao X. Bacteriocins: curial guardians of gastrointestinal tract. Compr Rev Food Sci Food Saf. 2024;23:e13292.

    Article  PubMed  CAS  Google Scholar 

  55. Deneka M, Ostash I, Yalamanchili S, Bennett CS, Ostash B. Insights into the biological properties of ligands and identity of operator site for lanK protein involved in landomycin production. Curr Microbiol. 2024;81:5.

    Article  CAS  Google Scholar 

  56. Panina I, Taldaev A, Efremov R, Chugunov A. Molecular dynamics insight into the lipid II recognition by type A lantibiotics: nisin, epidermin, and gallidermin. Micromachines. 2021;12:1169. https://doi.org/10.3390/mi12101169.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yang E, Fan L, Yan J, Jiang Y, Doucette C, Fillmore S, Walker B. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express. 2018;8:1–4. https://doi.org/10.1186/s13568-018-0536-0.

    Article  CAS  Google Scholar 

  58. Funck GD, de Lima Marques J, da Silva Dannenberg G, dos Santos Cruxen CE, Sehn CP, Prigol M, Silva MR, da Silva WP, Fiorentini ÂM. Characterization, toxicity, and optimization for the growth and production of bacteriocin-like substances by Lactobacillus curvatus. Probiotics Antimicrob Proteins. 2020;12:91–101. https://doi.org/10.1007/s12602-019-09531-y.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the London College UCK and Capital University of Science and Technology, Islamabad, Pakistan, for providing the platform to conduct research. None of the authors has any challenging conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Janbey.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munir, A., Janbey, A., Sajjad, B. et al. Bioinformatics-driven discovery of skin microbiota bacteriocins as potential antibiotics and probiotics. J Antibiot 78, 606–620 (2025). https://doi.org/10.1038/s41429-025-00847-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41429-025-00847-2

Search

Quick links