Abstract
The human skin microbiota, comprising a diverse range of microorganisms, including bacteria, viruses, and fungi, plays an important role in maintaining skin health and protecting against pathogenic invasions. Among these microorganisms, certain bacteria produce bacteriocins, which are ribosomal peptides with potent antimicrobial properties. This study presents a novel computational approach to identify and predict bacteriocins from microbial genomes comprising sebaceous region of the skin, aiming to explore their therapeutic potential. Through genome analysis using advanced bioinformatics tools, we identified potential genes, operons, open reading frames (ORFs), and promoter regions linked to bacteriocin production. The BAGEL4 platform was employed to detect structural bacteriocin genes, while modelling bacterial growth and bacteriocin expression under various environmental conditions was conducted using MATLAB’s SimBiology application. The results revealed the optimal conditions for bacteriocin production and highlighted promising candidates for further experimental validation. These findings underscore the significance of skin microbiota as a source of novel bacteriocins, offering potential alternatives to traditional antibiotics amidst rising antimicrobial resistance.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Tozzo P, D’angiolella G, Brun P, Castagliuolo I, Gino S, Caenazzo L. Skin microbiome analysis for forensic human identification: what do we know so far? Microorganisms. 2020;8:873. https://doi.org/10.3390/microorganisms8060873.
Timm CM, Loomis K, Stone W, Mehoke T, Brensinger B, Pellicore M, Staniczenko P, Charles C, Nayak S, Karig DK. Isolation and characterization of diverse microbial representatives from the human skin microbiome. Microbiome. 2020;8:1–2. https://doi.org/10.1186/s40168-020-00831-y.
Grice EA. The intersection of microbiome and host at the skin interface: genomic-and metagenomic-based insights. Genome Res. 2015;25:1514–20. https://doi.org/10.1101/gr.191320.115.
Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16:143–55. https://doi.org/10.1038/nrmicro.2017.157.
Cotter PD, Ross RP, Hill C. Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol. 2013;11:95–105. https://doi.org/10.1038/nrmicro2937.
Zheng J, Gänzle MG, Lin XB, Ruan L, Sun M. Diversity and dynamics of bacteriocins from human microbiome. Environ Microbiol. 2015;17:2133–43. https://doi.org/10.1111/1462-2920.12662.
Radaic A, de Jesus MB, Kapila YL. Bacterial anti-microbial peptides and nano-sized drug delivery systems: the state of the art toward improved bacteriocins. J Control Release. 2020;321:100–18. https://doi.org/10.1016/j.jconrel.2020.02.001.
Simons A, Alhanout K, Duval RE. Bacteriocins, antimicrobial peptides from bacterial origin: overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms. 2020;8:639. https://doi.org/10.3390/microorganisms8050639.
Nes IF. History, current knowledge, and future directions on bacteriocin research in lactic acid bacteria. Prokaryotic antimicrobial peptides: from genes to applications. 2011 Jan 28:3–12. https://doi.org/10.1007/978-1-4419-7692-5_1
Hegarty JW, Guinane CM, Ross RP, Hill C, Cotter PD. Bacteriocin production: a relatively unharnessed probiotic trait? F1000Res. 2016;5. https://doi.org/10.12688/f1000research.9615.1
Gillor O, Etzion A, Riley MA. The dual role of bacteriocins as anti-and probiotics. Appl Microbiol Biotechnol. 2008;81:591–606. https://doi.org/10.1007/s00253-008-1726-5.
Deegan LH, Cotter PD, Hill C, Ross P. Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J. 2006;16:1058–71. https://doi.org/10.1016/j.idairyj.2005.10.026.
Legrand TP, Wynne JW, Weyrich LS, Oxley AP. A microbial sea of possibilities: current knowledge and prospects for an improved understanding of the fish microbiome. Rev Aquac. 2020;12:1101–34. https://doi.org/10.1111/raq.12375.
Ogasawara M, Matsuhisa T, Kondo T, Sato J. Clinical characteristics of Corynebacterium simulans. Nagoya J Med Sci. 2021;83:269.
Lynch D, O’Connor PM, Cotter PD, Hill C, Field D, Begley M. Identification and characterisation of capidermicin, a novel bacteriocin produced by Staphylococcus capitis. PLoS ONE. 2019;14:e0223541 https://doi.org/10.1371/journal.pone.0223541.
Fujimura S, Nakamura T. Purification and properties of a bacteriocin-like substance (acnecin) of oral Propionibacterium acnes. Antimicrob Agents Chemother. 1978;14:893–8. https://doi.org/10.1128/AAC.14.6.893.
Chemao-Elfihri MW, Hakmi M, Abbou H, Kartti S, Fahime EE, Belyamani L, Boutayeb S. Staphylococcus hominis as a source of antimicrobial peptides: identification of a new peptide with potential antimicrobial properties using in silico approach. Arch Microbiol. 2025;207:1–5. https://doi.org/10.1007/s00203-025-04323-1.
Garcia-Gutierrez E, Walsh CJ, Sayavedra L, Diaz-Calvo T, Thapa D, Ruas-Madiedo P, Mayer MJ, Cotter PD, Narbad A. Genotypic and phenotypic characterization of fecal Staphylococcus epidermidis isolates suggests plasticity to adapt to different human body sites. Front Microbiol. 2020;11:688. https://doi.org/10.3389/fmicb.2020.00688.
Borralho J, Handem S, Lança J, Ferreira B, Candeias C, Henriques AO, Hiller NL, Valente C, Sá-Leão R. Inhibition of pneumococcal growth and biofilm formation by human isolates of Streptococcus mitis and Streptococcus oralis. Appl Environ Microbiol. 2025;91:e01336–24. https://doi.org/10.1128/aem.01336-24.
Garlet A, Andre-Frei V, Del Bene N, Cameron HJ, Samuga A, Rawat V, Ternes P, Leoty-Okombi S. Facial skin microbiome composition and functional shift with aging. Microorganisms. 2024;12:1021. https://doi.org/10.3390/microorganisms12051021.
Ahmed N, Joglekar P, Deming C, NISC Comparative Sequencing Program, Lemon KP, Kong HH, Segre JA, Conlan S. Genomic characterization of the C. tuberculostearicum species complex, a prominent member of the human skin microbiome. Msystems. 2023;8:e00632–23. https://doi.org/10.1128/msystems.00632-23.
Lefèvre CR, Pelletier R, Le Monnier A, Corvec S, Bille E, Potron A, Fihman V, Farfour E, Amara M, Degand N, Barraud O. Clinical relevance and antimicrobial susceptibility profile of the unknown human pathogen Corynebacterium aurimucosum. J Med Microbiol. 2021;70:001334.
Gladysheva IV, Chertkov KL, Cherkasov SV, Khlopko YA, Kataev VY, Valyshev AV. Probiotic potential, safety properties, and antifungal activities of Corynebacterium amycolatum ICIS 9 and Corynebacterium amycolatum ICIS 53 strains. Probiotics Antimicrob Proteins. 2023;15:588–600. https://doi.org/10.3390/microorganisms10020249.
Elalem NM, Shawky RM, Bahy R, Boselia AA, Emara M. The diversity of bacteriocin and its antiviral potential: an overview. Egypt J Med Microbiol. 2021;30:175–80. https://doi.org/10.21608/EJMM.2021.203649.
Teber R, Asakawa S. In silico screening of bacteriocin gene clusters within a set of marine Bacillota genomes. Int J Mol Sci. 2024;25:2566 https://doi.org/10.3390/ijms25052566.
Smythe P, Wilkinson HN. The skin microbiome: current landscape and future opportunities. Int J Mol Sci. 2023;24:3950.
Severn MM, Horswill AR. Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nat Rev Microbiol. 2023;21:97–111. https://doi.org/10.1038/s41579-022-00780-3.
Shang L, Deng D, Roffel S, Gibbs S. Differential influence of Streptococcus mitis on host response to metals in reconstructed human skin and oral mucosa. Contact Dermat. 2020;83:347–60. https://doi.org/10.1111/cod.13668.
Salamov VS, Solovyev A. Automatic annotation of microbial genomes and metagenomic sequences. In: Li, RW, editor. Metagenomics and its applications in agriculture, biomedicine and environmental studies. Nova Science Publishers; 2011. p 61–78.
Shahmuradov IA, Mohamad Razali R, Bougouffa S, Radovanovic A, Bajic VB. bTSSfinder: a novel tool for the prediction of promoters in cyanobacteria and Escherichia coli. Bioinformatics. 2017;33:334–40. https://doi.org/10.1093/bioinformatics/btw629.
Barakat M, Ortet P, Whitworth DE. P2CS: a database of prokaryotic two-component systems. Nucleic Acids Res. 2011;39:D771–6. https://doi.org/10.1093/nar/gkq1023.
Behr S, Fried L, Jung K. Identification of a novel nutrient-sensing histidine kinase/response regulator network in Escherichia coli. J Bacteriol. 2014;196:2023.
Auch AF, Klenk HP, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genom Sci. 2010;2:142–8. https://doi.org/10.4056/sigs.541628.
Tian T, Song J Mathematical modelling of the MAP kinase pathway using proteomic datasets. https://doi.org/10.1371/journal.pone.0042230.
Dréno B, Pécastaings S, Corvec S, Veraldi S, Khammari A, Roques C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J Eur Acad Dermatol Venereol. 2018;32:5–14. https://doi.org/10.1111/jdv.15043.
Yaacob MF, Murata A, Nor NH, Jesse FF, Yahya MF. Biochemical composition, morphology and antimicrobial susceptibility pattern of Corynebacterium pseudotuberculosis biofilm. J King Saud Univ Sci. 2021;33:101225. https://doi.org/10.1016/j.jksus.2020.10.022.
Kloos WE, Schleifer KH. Isolation and characterization of staphylococci from human skin II. Descriptions of four new species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans. Int J Syst Evolut Microbiol. 1975;25:62–79. https://doi.org/10.1099/00207713-25-1-62.
Benjamín C, Luis P, Fernando CL. Modeling the effects of pH variation and bacteriocin synthesis on bacterial growth. Appl Math Model. 2022;110:285–97. https://doi.org/10.1016/j.apm.2022.05.014.
Torres MD, Cao J, Franco OL, Lu TK, de la Fuente-Nunez C. Synthetic biology and computer-based frameworks for antimicrobial peptide discovery. ACS Nano. 2021;15:2143–64.
Giménez-Palomares F, Fernández de Córdoba P, Mejuto JC, Bendaña-Jácome RJ, Pérez-Guerra N. Evaluation and mathematical analysis of a four-dimensional lotka–volterra-like equation designed to describe the batch nisin production system. Mathematics. 2022;10:677 https://doi.org/10.3390/math10050677.
Martínez-Miranda JG, Chairez I, Durán-Páramo E. Mathematical modeling characterization of mannitol production by three heterofermentative lactic acid bacteria. Food Bioprod Process. 2022;135:11–32. https://doi.org/10.1016/j.fbp.2022.06.003.
Zheng Y, Szustakowski JD, Fortnow L, Roberts RJ, Kasif S. Computational identification of operons in microbial genomes. Genome Res. 2002;12:1221–30. https://doi.org/10.1101/gr.200602.
Sleator RD. An overview of the current status of eukaryote gene prediction strategies. Gene. 2010;461:1–4. https://doi.org/10.1016/j.gene.2010.04.008.
Mir K, Neuhaus K, Scherer S, Bossert M, Schober S. Predicting statistical properties of open reading frames in bacterial genomes. https://doi.org/10.1371/journal.pone.0045103.
Rangannan V, Bansal M. High-quality annotation of promoter regions for 913 bacterial genomes. Bioinformatics. 2010;26:3043–50. https://doi.org/10.1093/bioinformatics/btq577.
Jung K, Fried L, Behr S, Heermann R. Histidine kinases and response regulators in networks. Curr Opin Microbiol. 2012;15:118–24. https://doi.org/10.1016/j.mib.2011.11.009.
Wang S. Bacterial two-component systems: structures and signaling mechanisms. Protein Phosphorylation Hum health. 2012;1:439–66. https://doi.org/10.5772/48277.
Martínez B, Rodríguez A, Suárez E. Antimicrobial peptides produced by bacteria: the bacteriocins. New weapons to control bacterial growth. 2016:15–38. https://doi.org/10.1007/978-3-319-28368-5_2.
Christensen GJ, Brüggemann H. Bacterial skin commensals and their role as host guardians. Benef Microbes. 2014;5:201–15. https://doi.org/10.3920/BM2012.0062.
Puls JS, Winnerling B, Power JJ, Krüger AM, Brajtenbach D, Johnson M, Bilici K, Camus L, Fließwasser T, Schneider T, Sahl HG. Staphylococcus epidermidis bacteriocin A37 kills natural competitors with a unique mechanism of action. ISME J. 2024;18:wrae044. https://doi.org/10.1093/ismejo/wrae044.
Li Y, Wu Y, Peng Z, Long L, Guo Q, Tian L, He Z, Xiang S, Kang Y, Guan T. Isolation and identification of bacteriocin-producing lactic acid bacteria from Daqu and mining of bacteriocin gene. Biologia. 2024;79:2891–905. https://doi.org/10.1007/s11756-024-01746-x.
Daba GM, Ishibashi N, Gong X, Taki H, Yamashiro K, Lim YY, Zendo T, Sonomoto K. Characterisation of the action mechanism of a Lactococcus-specific bacteriocin, lactococcin Z. J Biosci Bioeng. 2018;126:603–10. https://doi.org/10.1016/j.jbiosc.2018.05.018.
Xu Z, Yang Q, Zhu Y. Transcriptome analysis reveals the molecular mechanisms of the novel Lactobacillus pentosus pentocin against Bacillus cereus. Food Res Int. 2022;151:110840. https://doi.org/10.1016/j.foodres.2021.110840.
Gu Q, Yan J, Lou Y, Zhang Z, Li Y, Zhu Z, Liu M, Wu D, Liang Y, Pu J, Zhao X. Bacteriocins: curial guardians of gastrointestinal tract. Compr Rev Food Sci Food Saf. 2024;23:e13292.
Deneka M, Ostash I, Yalamanchili S, Bennett CS, Ostash B. Insights into the biological properties of ligands and identity of operator site for lanK protein involved in landomycin production. Curr Microbiol. 2024;81:5.
Panina I, Taldaev A, Efremov R, Chugunov A. Molecular dynamics insight into the lipid II recognition by type A lantibiotics: nisin, epidermin, and gallidermin. Micromachines. 2021;12:1169. https://doi.org/10.3390/mi12101169.
Yang E, Fan L, Yan J, Jiang Y, Doucette C, Fillmore S, Walker B. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express. 2018;8:1–4. https://doi.org/10.1186/s13568-018-0536-0.
Funck GD, de Lima Marques J, da Silva Dannenberg G, dos Santos Cruxen CE, Sehn CP, Prigol M, Silva MR, da Silva WP, Fiorentini ÂM. Characterization, toxicity, and optimization for the growth and production of bacteriocin-like substances by Lactobacillus curvatus. Probiotics Antimicrob Proteins. 2020;12:91–101. https://doi.org/10.1007/s12602-019-09531-y.
Acknowledgements
The authors are grateful to the London College UCK and Capital University of Science and Technology, Islamabad, Pakistan, for providing the platform to conduct research. None of the authors has any challenging conflicts of interest.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Munir, A., Janbey, A., Sajjad, B. et al. Bioinformatics-driven discovery of skin microbiota bacteriocins as potential antibiotics and probiotics. J Antibiot 78, 606–620 (2025). https://doi.org/10.1038/s41429-025-00847-2
Received:
Revised:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41429-025-00847-2


