Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

New indole diketopiperazine from the fungus Penicillium chrysogenum

Abstract

A new indole diketopiperazine penichrysogenone A (1), and two new natural products 4-(N-benzoyl-N-hydroxyamino)-butyric acid (2) and 2-acetamido-N-benzyl-2-(ethylamino)acetamide (3), together with 10 known compounds (413) were isolated from the fungus Penicillium chrysogenum wis54-1255. The structure of new compound was determined by the extensive spectroscopic analyses and ECD calculations. Bioactivity assays revealed that compound 4 showed antibacterial activity against Pseudomonas solanacearum (MIC = 64 μg/mL), while compound 10 exhibited antifungal activity against Candida auris (MIC = 32 μg/mL). Furthermore, compounds 2 and 10 displayed potent ABTS radical scavenging activity, superior to that of the positive control ascorbic acid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Luo ZW, Yin FC, Wang XB, Kong LY. Progress in approved drugs from natural product resources. Chin J Nat Med. 2024;22:195–211.

    PubMed  Google Scholar 

  2. Shi Y, et al. New bioactive secondary metabolites from fungi: 2023. Mycology. 2024;15:283–321.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bao MY, et al. New bioactive secondary metabolites from fungi: 2024. Mycology. 2025;16:961–87.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wadhwa K, et al. A comprehensive review of the diversity of fungal secondary metabolites and their emerging applications in healthcare and environment. Mycobiology. 2024;52:335–87.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barreiro C, Albillos SM, García-Estrada C. Penicillium chrysogenum: beyond the penicillin. Adv Appl Microbiol. 2024;127:143–221.

    Article  PubMed  Google Scholar 

  6. Perrone G, Susca A. Penicillium species and their associated mycotoxins. Methods Mol Biol. 2017;1542:107–19.

    Article  PubMed  Google Scholar 

  7. Shaaban R, Elnaggar MS, Khalil N, Singab ANB. A comprehensive review on the medicinally valuable endosymbiotic fungi Penicillium chrysogenum. Arch Microbiol. 2023;205:240.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ariantari NP, et al. Indole diterpenoids from an endophytic Penicillium sp. J Nat Prod. 2019;82:1412–23.

    Article  PubMed  Google Scholar 

  9. Yao FH, Liang X, Lu XH, Cheng X, Luo LX, Qi SH. Pyrrospirones K–Q, decahydrofluorene-class alkaloids from the marine-derived fungus Penicillium sp. SCSIO 41512. J Nat Prod. 2022;85:2071–81.

    Article  PubMed  Google Scholar 

  10. Lin S, Wu YZ, Chen KY, Ye J, Yang XW, Zhang WD. Polyketides from the fungus Penicillium decumbens. J Asian Nat Prod Res. 2018;20:445–50.

    Article  PubMed  Google Scholar 

  11. Long JY, et al. Four new steroids from the marine soft coral-derived fungus Penicillium sp. SCSIO41201. Chin J Nat Med. 2020;18:250–5.

    PubMed  Google Scholar 

  12. Mady MS, et al. The indole alkaloid meleagrin, from the olive tree endophytic fungus Penicillium chrysogenum, as a novel lead for the control of c-Met-dependent breast cancer proliferation, migration and invasion. Bioorg Med Chem. 2016;24:113–22.

    Article  PubMed  Google Scholar 

  13. Chiba T, et al. Herquline A, produced by Penicillium herquei FKI-7215, exhibits anti-influenza virus properties. Biosci Biotechnol Biochem. 2017;81:59–62.

    Article  PubMed  Google Scholar 

  14. Shi Y, et al. New cytotoxic γ-lactam alkaloids from the mangrove-derived fungus Talaromyces hainanensis sp. nov. guided by molecular networking strategy. J Agric Food Chem. 2024;72:17431–43.

    Article  PubMed  Google Scholar 

  15. Lu PY, Shi Y, Zhang JX, Hong K, Xue YX, Liu L. New prenylated indole-benzodiazepine-2,5-diones with α-glucosidase inhibitory activities from the mangrove-derived Aspergillus spinosus. Int J Biol Macromol. 2024;25:128808.

    Article  Google Scholar 

  16. Huo RY, Ji MH, Liu GR, Liu L. Discovery of new bianthrones and chlorinated bianthrones with cytotoxic activity against cancer cells from Penicillium hispanicum guided by HSQC-based DeepSAT. Mycology. 2025;16:2526766.

    Google Scholar 

  17. Cui CB, Kakeya H, Osada H. Novel mammalian cell cycle inhibitors, tryprostatins A, B and other diketopiperazines produced by Aspergillus fumigatus. II. Physico-chemical properties and structures. J Antibiot. 1996;49:534–40.

    Article  Google Scholar 

  18. Kurz T, Geffken D, Wackendorff C. Carboxylic acid analogues of fosmidomycin. Z Naturforsch B. 2003;58:457–61.

    Article  Google Scholar 

  19. Abdulfatai U, Uzairu A, Uba S, Ignacio MeloJ. Quantitative structure activity relationship study of anticonvulsant activity of α_substituted acetamido-N-benzylacetamide derivatives. Cogent Chem. 2016;2:1166538.

    Article  Google Scholar 

  20. Huang HJ, Ling TJ, Wei SH, Zhang CX. A new 4-oxazolidinone from Sorghum halepense(L.) Pers. Rec Nat Prod. 2025;9:247–50.

    Google Scholar 

  21. Xu J, Aly AH, Wray V, Proksch P. Polyketide derivatives of endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata. Tetrahedron Lett. 2011;52:21–25.

    Article  Google Scholar 

  22. Joshi BK, Gloer JB, Wicklow DT. Bioactive natural products from a sclerotium-colonizing isolate of Humicola fuscoatra. J Nat Prod. 2002;65:1734–7.

    Article  PubMed  Google Scholar 

  23. Lu X, et al. α-Glucosidase inhibitors from two mangrove-derived actinomycetes. Molecules. 2023;28:3822.

  24. Zhao Y, et al. Design, synthesis, and evaluation of mono-carbonyl analogues of curcumin (MCACs) as potential antioxidants against periodontitis. J Periodontal Res. 2021;56:656–66.

    Article  PubMed  Google Scholar 

  25. Hassan SA, et al. Design and synthesis of oxazepine derivatives from sulfonamide Schiff bases as antimicrobial and antioxidant agents with low cytotoxicity and hemolytic prospective. J Mol Struct. 2023;1292:136121.

    Article  Google Scholar 

  26. Tian Y, et al. Nutrition, bioactive components, and hepatoprotective activity of fruit vinegar produced from Ningxia wolfberry. Molecules. 2022;27:4422.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wu SB, et al. Triterpenoids and steroids from the fruits of Melia toosendan and their cytotoxic effects on two human cancer cell lines. J Nat Prod. 2010;73:1898–906.

    Article  PubMed  Google Scholar 

  28. Lee C, et al. Bioactive secondary metabolites produced by an endophytic fungus Gaeumannomyces sp. JS0464 from a maritime halophyte Phragmites communis. J Antibiot. 2017;70:737–42.

    Article  Google Scholar 

  29. Abdel-Sattar OE, et al. Hypophyllanthin and phyllanthin from Phyllanthus niruri synergize doxorubicin anticancer properties against resistant breast cancer cells. ACS omega. 2023;8:28563–76.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Professor Gang Liu for providing the fungal strain. This research was funded by grants from the National Natural Science Foundation of China (32022002) and the National Key Research and Development Program of China (2021YFC2100600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, M., Liu, Q. & Liu, L. New indole diketopiperazine from the fungus Penicillium chrysogenum. J Antibiot 79, 74–79 (2026). https://doi.org/10.1038/s41429-025-00885-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41429-025-00885-w

Search

Quick links