Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association of serum total antioxidant capacity and uric acid with obesity and cardiometabolic traits in Mexican children

Abstract

Background/objectives

Serum total antioxidant capacity (sTAC) and uric acid (SUA) levels have been related to oxidative stress in metabolic diseases. Nevertheless, the evidence in epidemiological studies is still scarce and inconsistent. We aimed to evaluate the association between sTAC, SUA, obesity, and cardiometabolic traits in Mexican children.

Subjects/methods

This cross-sectional study analyzed anthropometric data, blood pressure, cardiometabolic traits, and SUA levels of 248 children with normal weight (NW) and 255 with obesity (OB). sTAC was measured with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method.

Results

sTAC was directly related to SUA (β = 0.905 ± 0.358, p = 0.012). Obesity was positively associated with sTAC (β = 0.075 ± 0.020, p < 0.001) and SUA (β = 0.706 ± 0.129, p < 0.001). sTAC was negatively associated with diastolic blood pressure (β = -8.458 ± 3.758, p = 0.026) in NW children and positively associated with insulin (β = 9.511 ± 3.107, p = 0.002) and the homeostatic model assessment of insulin resistance (β = 2.065 ± 0.680, p = 0.003) in OB children. SUA showed negative associations with total cholesterol (β = -4.062 ± 1.340, p = 0.003) and low-density lipoprotein cholesterol (β = -2.470 ± 1.190, p = 0.039) in NW children and high-density lipoprotein cholesterol (β = -1.306 ± 0.409, p < 0.01) in OB children.

Conclusion

sTAC and SUA are positively associated and are increased in obesity. According to weight status, sTAC and SUA are associated with blood pressure, insulin resistance markers, and lipid profile.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Association of serum total antioxidant capacity (sTAC) with serum uric acid (SUA).
Fig. 2: Association of obesity status with serum total antioxidant capacity and uric acid levels.

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Shamah-Levy T, Gaona-Pineda EB, Cuevas-Nasu L, Valenzuela-Bravo DG, Morales-Ruan C, Rodríguez-Ramírez S, et al. Sobrepeso y obesidad en población escolar y adolescente. salud pública de méxico. 2024;66:404–13.

    Article  PubMed  Google Scholar 

  2. Vahid F, Rahmani D, Davoodi SH. The correlation between serum inflammatory, antioxidant, glucose handling biomarkers, and Dietary Antioxidant Index (DAI) and the role of DAI in obesity/overweight causation: population-based case-control study. Int J Obes (Lond). 2021;45:2591–9.

    Article  PubMed  Google Scholar 

  3. Talegawkar SA, Beretta G, Yeum KJ, Johnson EJ, Carithers TC, Taylor HA Jr, et al. Total antioxidant performance is associated with diet and serum antioxidants in participants of the diet and physical activity substudy of the Jackson Heart Study. J Nutr. 2009;139:1964–71.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Farhangi MA, Vajdi M, Fathollahi P. Dietary total antioxidant capacity (TAC), general and central obesity indices and serum lipids among adults: An updated systematic review and meta-analysis. Int J Vitam Nutr Res. 2022;92:406–22.

    PubMed  Google Scholar 

  5. Puchau B, Ochoa MC, Zulet MA, Marti A, Martinez JA, Members G. Dietary total antioxidant capacity and obesity in children and adolescents. Int J Food Sci Nutr. 2010;61:713–21.

    Article  PubMed  Google Scholar 

  6. Kilic E, Ozer OF, Erek Toprak A, Erman H, Torun E, Kesgin Ayhan S, et al. Oxidative stress status in childhood obesity: a potential risk predictor. Med Sci Monit. 2016;22:3673–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jaksic M, Martinovic M, Gligorovic-Barhanovic N, Vujacic A, Djurovic D, Nedovic-Vukovic M. Association between inflammation, oxidative stress, vitamin D, copper and zinc with pre-obesity and obesity in school children from the city of Podgorica, Montenegro. J Pediatr Endocrinol Metab. 2019;32:951–7.

    Article  PubMed  Google Scholar 

  8. Rowicka G, Dylag H, Ambroszkiewicz J, Riahi A, Weker H, Chelchowska M. Total oxidant and antioxidant status in prepubertal children with obesity. Oxid Med Cell Longev. 2017;2017:5621989.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vehapoglu A, Turkmen S, Goknar N, Ozer OF. Reduced antioxidant capacity and increased subclinical inflammation markers in prepubescent obese children and their relationship with nutritional markers and metabolic parameters. Redox Rep. 2016;21:271–80.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ruperez AI, Mesa MD, Anguita-Ruiz A, Gonzalez-Gil EM, Vazquez-Cobela R, Moreno LA, et al. Antioxidants and oxidative stress in children: influence of puberty and metabolically unhealthy status. Antioxidants (Basel). 2020;9:618–36.

  11. Correia-Costa L, Sousa T, Morato M, Cosme D, Afonso J, Areias JC, et al. Oxidative stress and nitric oxide are increased in obese children and correlate with cardiometabolic risk and renal function. Br J Nutr. 2016;116:805–15.

    Article  PubMed  Google Scholar 

  12. Eren E, Abuhandan M, Solmaz A, Taskin A. Serum paraoxonase/arylesterase activity and oxidative stress status in children with metabolic syndrome. J Clin Res Pediatr Endocrinol. 2014;6:163–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Morandi A, Corradi M, Piona C, Fornari E, Puleo R, Maffeis C. Systemic anti-oxidant capacity is inversely correlated with systolic blood pressure and pulse pressure in children with obesity. Nutr Metab Cardiovasc Dis. 2020;30:508–13.

    Article  PubMed  Google Scholar 

  14. Ghiselli A, Serafini M, Natella F, Scaccini C. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med. 2000;29:1106–14.

    Article  PubMed  Google Scholar 

  15. Wayner DD, Burton GW, Ingold KU, Barclay LR, Locke SJ. The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim Biophys Acta. 1987;924:408–19.

    Article  PubMed  Google Scholar 

  16. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239:70–6.

    Article  PubMed  Google Scholar 

  17. Thomazini F, de Carvalho BS, de Araujo PX, Franco MDC. High uric acid levels in overweight and obese children and their relationship with cardiometabolic risk factors: what is missing in this puzzle?. J Pediatr Endocrinol Metab. 2021;34:1435–41.

    Article  PubMed  Google Scholar 

  18. Albuja-Quintana N, Chisaguano-Tonato AM, Herrera-Fontana ME, Figueroa-Samaniego S, Alvarez-Suarez JM. Relationship between plasma uric acid levels, antioxidant capacity, and oxidative damage markers in overweight and obese adults: A cross-sectional study. PLoS One. 2025;20:e0312217.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ye W, Zhou X, Xu Y, Zheng C, Liu P. Serum uric acid levels among chinese children: reference values and association with overweight/obesity. Clin Pediatr (Philos). 2024;63:1684–90.

    Article  Google Scholar 

  20. Zheng R, Chen C, Yang T, Chen Q, Lu R, Mao Y. Serum uric acid levels and the risk of obesity: a longitudinal population-based epidemiological study. Clin Lab. 2017;63:1581–7.

    Article  PubMed  Google Scholar 

  21. Zeng J, Lawrence WR, Yang J, Tian J, Li C, Lian W, et al. Association between serum uric acid and obesity in Chinese adults: a 9-year longitudinal data analysis. BMJ Open. 2021;11:e041919.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Flegal KM, Cole TJ. Construction of LMS parameters for the Centers for Disease Control and Prevention 2000 growth charts. Natl Health Stat Report. 2013:1–3.

  23. Brand-Williams W, Cuvelier M, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 1995;28:25–30.

    Article  Google Scholar 

  24. Fabbrini E, Serafini M, Colic Baric I, Hazen SL, Klein S. Effect of plasma uric acid on antioxidant capacity, oxidative stress, and insulin sensitivity in obese subjects. Diabetes. 2014;63:976–81.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nieto FJ, Iribarren C, Gross MD, Comstock GW, Cutler RG. Uric acid and serum antioxidant capacity: a reaction to atherosclerosis?. Atherosclerosis. 2000;148:131–9.

    Article  PubMed  Google Scholar 

  26. Wang Y, Yang M, Lee SG, Davis CG, Kenny A, Koo SI, et al. Plasma total antioxidant capacity is associated with dietary intake and plasma level of antioxidants in postmenopausal women. J Nutr Biochem. 2012;23:1725–31.

    Article  PubMed  Google Scholar 

  27. Dominguez-Zambrano E, Pedraza-Chaverri J, Lopez-Santos AL, Medina-Campos ON, Cruz-Rivera C, Bueno-Hernandez F, et al. Association between serum uric acid levels, nutritional and antioxidant status in patients on hemodialysis. Nutrients. 2020;12:2600–13.

  28. Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci Usa. 1981;78:6858–62.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Muraoka S, Miura T. Inhibition by uric acid of free radicals that damage biological molecules. Pharmacol Toxicol. 2003;93:284–9.

    Article  PubMed  Google Scholar 

  30. Anaya-Morua W, Villafan-Bernal JR, Ramirez-Moreno E, Garcia-Ortiz H, Martinez-Portilla RJ, Contreras-Cubas C, et al. Total antioxidant capacity in obese and non-obese subjects and its association with anthropo-metabolic markers: systematic review and meta-analysis. Antioxidants (Basel). 2023;12:1512–27.

  31. Ortner Hadziabdic M, Vitali Cepo D, Rahelic D, Bozikov V. The effect of the mediterranean diet on serum total antioxidant capacity in obese patients: a randomized controlled trial. J Am Coll Nutr. 2016;35:224–35.

    Article  PubMed  Google Scholar 

  32. Lim SH, Fan SH, Say YH. Plasma total antioxidant capacity (TAC) in obese Malaysian subjects. Malays J Nutr. 2012;18:345–54.

    PubMed  Google Scholar 

  33. Mohammadi S, Lotfi K, Mirzaei S, Asadi A, Akhlaghi M, Saneei P. Dietary total antioxidant capacity in relation to metabolic health status in overweight and obese adolescents. Nutr J. 2022;21:54.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Puchau B, Zulet MA, de Echavarri AG, Hermsdorff HH, Martinez JA. Dietary total antioxidant capacity is negatively associated with some metabolic syndrome features in healthy young adults. Nutrition. 2010;26:534–41.

    Article  PubMed  Google Scholar 

  35. Carrion-Garcia CJ, Guerra-Hernandez EJ, Garcia-Villanova B, Molina-Montes E. Non-enzymatic antioxidant capacity (NEAC) estimated by two different dietary assessment methods and its relationship with NEAC plasma levels. Eur J Nutr. 2017;56:1561–76.

    Article  PubMed  Google Scholar 

  36. Svetkey LP, Simons-Morton D, Vollmer WM, Appel LJ, Conlin PR, Ryan DH, et al. Effects of dietary patterns on blood pressure: subgroup analysis of the Dietary Approaches to Stop Hypertension (DASH) randomized clinical trial. Arch Intern Med. 1999;159:285–93.

    Article  PubMed  Google Scholar 

  37. Bae JC, Seo SH, Hur KY, Kim JH, Lee MS, Lee MK, et al. Association between serum albumin, insulin resistance, and incident diabetes in nondiabetic subjects. Endocrinol Metab (Seoul). 2013;28:26–32.

    Article  PubMed  Google Scholar 

  38. Lloyd CE, Kalinyak JE, Hutson SM, Jefferson LS. Stimulation of albumin gene transcription by insulin in primary cultures of rat hepatocytes. Am J Physiol. 1987;252:C205–14.

    Article  PubMed  Google Scholar 

  39. Anraku M, Chuang VT, Maruyama T, Otagiri M. Redox properties of serum albumin. Biochim Biophys Acta. 2013;1830:5465–72.

    Article  PubMed  Google Scholar 

  40. Li X, Chen D, Wang G, Lu Y. Probing the interaction of human serum albumin with DPPH in the absence and presence of the eight antioxidants. Spectrochim Acta A Mol Biomol Spectrosc. 2015;137:1144–52.

    Article  PubMed  Google Scholar 

  41. Bravi MC, Armiento A, Laurenti O, Cassone-Faldetta M, De Luca O, Moretti A, et al. Insulin decreases intracellular oxidative stress in patients with type 2 diabetes mellitus. Metabolism. 2006;55:691–5.

    Article  PubMed  Google Scholar 

  42. Takahashi S, Hisatsune A, Kurauchi Y, Seki T, Katsuki H. Insulin-like growth factor 1 specifically up-regulates expression of modifier subunit of glutamate-cysteine ligase and enhances glutathione synthesis in SH-SY5Y cells. Eur J Pharmacol. 2016;771:99–106.

    Article  PubMed  Google Scholar 

  43. Nagao H, Nishizawa H, Tanaka Y, Fukata T, Mizushima T, Furuno M, et al. Hypoxanthine secretion from human adipose tissue and its increase in hypoxia. Obesity (Silver Spring). 2018;26:1168–78.

    Article  PubMed  Google Scholar 

  44. Lin WT, Chan TF, Huang HL, Lee CY, Tsai S, Wu PW, et al. Fructose-rich beverage intake and central adiposity, uric acid, and pediatric insulin resistance. J Pediatr. 2016;171:90–6.e1.

    Article  PubMed  Google Scholar 

  45. Shamah-Levy T, Gaona-Pineda EB, Rodríguez-Ramírez S, Morales-Ruan C, Cuevas-Nasu L, Méndez-Gómez-Humarán I, et al. Sobrepeso, obesidad y consumo de azúcares en población escolar y adolescente de México. Ensanut 2020-2022 salud pública de méxico. 2023;65:570–80.

    PubMed  Google Scholar 

  46. Xiao Y, Wang H, Han L, Lyu G, Li S. Effect of uric acid on lipid metabolism assessed via restricted cubic splines: A new insight. Heliyon. 2024;10:e37408.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Saito Y, Noguchi N, Niki E. Cholesterol is more readily oxidized than phospholipid linoleates in cell membranes to produce cholesterol hydroperoxides. Free Radic Biol Med. 2024;211:89–95.

    Article  PubMed  Google Scholar 

  48. Patterson RA, Horsley ET, Leake DS. Prooxidant and antioxidant properties of human serum ultrafiltrates toward LDL: important role of uric acid. J Lipid Res. 2003;44:512–21.

    Article  PubMed  Google Scholar 

  49. Kellogg EW 3rd, Fridovich I. Liposome oxidation and erythrocyte lysis by enzymically generated superoxide and hydrogen peroxide. J Biol Chem. 1977;252:6721–8.

    Article  PubMed  Google Scholar 

  50. Frei B, Stocker R, Ames BN. Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci USA 1988;85:9748–52.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kuzkaya N, Weissmann N, Harrison DG, Dikalov S. Interactions of peroxynitrite with uric acid in the presence of ascorbate and thiols: implications for uncoupling endothelial nitric oxide synthase. Biochem Pharmacol. 2005;70:343–54.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the children who participated in this study and their parents or guardians for their valuable support and commitment. We would like to thank MD. Andrés Rocha Aguado, the nutritionist Evelyn Lizeth Martínez Cisneros, M.D. Brenda Valdez Feregrino (Family Medicine) and the staff of the clinical laboratory service of UMF No. 23 (IMSS), Daniela Orozco-Colín (Universidad Autónoma Metropolitana), Monserrat Hernández Reyes (Universidad Nacional Autónoma de México), and the Federal Educational Authorities of Mexico City for their invaluable efforts and contributions to this work.

Funding

This work was supported by grants from the Instituto Mexicano del Seguro Social (IMSS) under the program Temas Prioritarios en Salud 2018 (Grant No. FIS/IMSS/PROT/PRIO/18/079). A.N.C. (Ciencias Médicas Odontológicas y de la Salud PhD program from Universidad Nacional Autónoma de México) was supported by PhD fellowships from the Secretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI). A.R.C. was supported by Investigadoras e Investigadores por México fellowships from the SECIHTI.

Author information

Authors and Affiliations

Authors

Contributions

A.N.C., M.V.M. and M.C. designed the study, performed the statistical analysis, wrote the manuscript, and designed tables and figures. A.N.C., M.V.M., A.R.C., A.P.B., A.C.A., G.C.D. and E.F.G. collected the data, performed the experiments, and critically reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Miguel Vazquez-Moreno or Miguel Cruz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The research protocol was approved by the National Scientific Research Commission and the Ethics Commission of the IMSS (CONBIOETICA-09-CEI-009-20160601; Registration number R-2016-785-100) and was conducted in compliance with the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nava-Cabrera, A., Ramírez-Cruz, A., Pérez-Bautista, A. et al. Association of serum total antioxidant capacity and uric acid with obesity and cardiometabolic traits in Mexican children. Eur J Clin Nutr 80, 73–78 (2026). https://doi.org/10.1038/s41430-025-01651-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41430-025-01651-9

Search

Quick links