Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of an episignature for the MEF2C-associated syndrome

Abstract

Neurodevelopmental disorder with hypotonia, stereotypic hand movements, and impaired language (NEDHSIL), also known as MEF2C-related disorder or MEF2C haploinsufficiency syndrome (MCHS), is a condition caused by pathogenic variants in the Myocyte Enhancer Factor-2C (MEF2C) gene. This study aimed to identify a DNA methylation episignature specific to NEDHSIL and explore its similarities with other known episignatures. Genome-wide DNA levels were assessed in a cohort of patients with MEF2C mutations and controls, and differentially methylated CpG sites were identified. A bioinformatic analysis yielded a classifier that was trained against controls and other known episignature disorders within the EpiSign Knowledge Database. The classifier demonstrated high accuracy, sensitivity, and specificity in classifying NEDHSIL samples. Furthermore, functional annotation and comparative analysis revealed similarities between the NEDHSIL episignature and other genetic neurodevelopmental disorders. This study provides evidence for a DNA methylation episignature specific to NEDHSIL and highlights the potential utility of this epigenetic biomarker for diagnosing and understanding molecular pathophysiology of neurodevelopmental disorders associated with MEF2C mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Episignature discovery plus validation cohort.
Fig. 2: Visualization of shared probes between NEDHSIL and episignature disorders.
Fig. 3: Correlation between NEDHSIL and other episignature disorders.

Similar content being viewed by others

Data availability

Datasets used in this study that are available publicly are previously described [23]. Anonymized data for each subject is described in the study. The individual genomic and epigenomic or any other personally identifiable data for other samples in the EpiSign Knowledge Database (EKD) are not available for deposition in publicly accessible databases due to institutional and ethics restrictions. Specifically, these include data and samples submitted from external institutions to London Health Sciences EKD that are subject to Institutional Material and Data Transfer agreements, data submitted to London Health Sciences for episignature assessment under Research Services Agreements, and research study cohorts under Institutional Research Ethics Approval (Western University REB 106302; and REB 116108). Some of the software packages used in this study are publicly available as described in the Materials and Methods. EpiSignTM is a commercial software and is not publicly available.

References

  1. Vrečar I, Innes J, Jones E, Kingston H, Reardon W, Kerr B, et al. Further Clinical Delineation of the MEF2C Haploinsufficiency Syndrome: Report on New Cases and Literature Review of Severe Neurodevelopmental Disorders Presenting with Seizures, Absent Speech, and Involuntary Movements. J Pediatr Genet. 2017;06:129–41. https://doi.org/10.1055/s-0037-1601335.

    Article  Google Scholar 

  2. Paciorkowski AR, Traylor RN, Rosenfeld JA, Hoover JM, Harris CJ, Winter S, et al. MEF2C Haploinsufficiency features consistent hyperkinesis, variable epilepsy, and has a role in dorsal and ventral neuronal developmental pathways. Neurogenetics. 2013;14:99–111. https://doi.org/10.1007/s10048-013-0356-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Adrião A, Santana I, Ribeiro C, Cancela ML, Conceição N, Grazina M. Identification of a novel mutation in MEF2C gene in an atypical patient with frontotemporal lobar degeneration. Neurological Sci. 2022;43:319–26. https://doi.org/10.1007/s10072-021-05269-0.

    Article  Google Scholar 

  4. Bienvenu T, Diebold B, Chelly J, Isidor B. Refining the phenotype associated with MEF2C point mutations. Neurogenetics. 2013;14:71–5. https://doi.org/10.1007/s10048-012-0344-7.

    Article  PubMed  Google Scholar 

  5. Wen F, Hou J, Ji X, Chu X, Liu X, Shi Z, et al. The Mef2c/AdipoR1 axis is responsible for myogenic differentiation and is regulated by resistin in skeletal muscles. Gene. 2023;857:147193. https://doi.org/10.1016/j.gene.2023.147193.

    Article  CAS  PubMed  Google Scholar 

  6. Homminga I, Pieters R, Langerak AW, de Rooi JJ, Stubbs A, Verstegen M, et al. Integrated Transcript and Genome Analyses Reveal NKX2-1 and MEF2C as Potential Oncogenes in T Cell Acute Lymphoblastic Leukemia. Cancer Cell. 2011;19:484–97. https://doi.org/10.1016/j.ccr.2011.02.008.

    Article  CAS  PubMed  Google Scholar 

  7. Orozco Morales ML, Rinaldi CA, de Jong E, Lansley SM, Lee YCG, Zemek RM, et al. Geldanamycin treatment does not result in anti-cancer activity in a preclinical model of orthotopic mesothelioma. PLoS ONE. 2023;18:e0274364. https://doi.org/10.1371/journal.pone.0274364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haberland M, Arnold MA, McAnally J, Phan D, Kim Y, Olson EN. Regulation of HDAC9 Gene Expression by MEF2 Establishes a Negative-Feedback Loop in the Transcriptional Circuitry of Muscle Differentiation. Mol Cell Biol. 2007;27:518–25. https://doi.org/10.1128/MCB.01415-06.

    Article  CAS  PubMed  Google Scholar 

  9. Cosgrove D, Whitton L, Fahey L, Ó Broin P, Donohoe G, Morris DW. Genes influenced by MEF2C contribute to neurodevelopmental disease via gene expression changes that affect multiple types of cortical excitatory neurons. Hum Mol Genet. 2021;30:961–70. https://doi.org/10.1093/hmg/ddaa213.

    Article  CAS  PubMed  Google Scholar 

  10. Zweier M, Rauch A. The MEF2C-Related and 5q14.3q15 Microdeletion Syndrome. Mol Syndromol. 2011;2:164–70. https://doi.org/10.1159/000337496.

    Article  CAS  Google Scholar 

  11. Lambert L, Bienvenu T, Allou L, Valduga M, Echenne B, Diebold B, et al. MEF2C mutations are a rare cause of Rett or severe Rett-like encephalopathies. Clin Genet. 2012;82:499–501. https://doi.org/10.1111/j.1399-0004.2012.01861.x.

    Article  CAS  PubMed  Google Scholar 

  12. Rocha H, Sampaio M, Rocha R, Fernandes S, Leão M. MEF2C haploinsufficiency syndrome: Report of a new MEF2C mutation and review. Eur J Med Genet. 2016;59:478–82. https://doi.org/10.1016/j.ejmg.2016.05.017.

    Article  PubMed  Google Scholar 

  13. Bjornsson HT. The Mendelian disorders of the epigenetic machinery. Genome Res. 2015;25:1473–81. https://doi.org/10.1101/gr.190629.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. der Laan L, van, Rooney K, Trooster TM, Mannens MM, Sadikovic B, Henneman P. DNA methylation episignatures: insight into copy number variation. Epigenomics. 2022;14:1373–88. https://doi.org/10.2217/epi-2022-0287.

    Article  CAS  PubMed  Google Scholar 

  15. Potthoff MJ, Olson EN. MEF2: a central regulator of diverse developmental programs. Development. 2007;134:4131–40. https://doi.org/10.1242/dev.008367.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Z, Zhao Y. Progress on the roles of MEF2C in neuropsychiatric diseases. Mol Brain. 2022;15:8. https://doi.org/10.1186/s13041-021-00892-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Flavell SW, Kim T-K, Gray JM, Harmin DA, Hemberg M, Hong EJ, et al. Genome-Wide Analysis of MEF2 Transcriptional Program Reveals Synaptic Target Genes and Neuronal Activity-Dependent Polyadenylation Site Selection. Neuron. 2008;60:1022–38. https://doi.org/10.1016/j.neuron.2008.11.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Levy MA, McConkey H, Kerkhof J, Barat-Houari M, Bargiacchi S, Biamino E, et al. Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders. Human Genet Genomics Adv. 2022;3:100075. https://doi.org/10.1016/j.xhgg.2021.100075.

    Article  CAS  Google Scholar 

  19. Aref-Eshghi E, Rodenhiser DI, Schenkel LC, Lin H, Skinner C, Ainsworth P, et al. Genomic DNA Methylation Signatures Enable Concurrent Diagnosis and Clinical Genetic Variant Classification in Neurodevelopmental Syndromes. Am J Hum Genet. 2018;102:156–74. https://doi.org/10.1016/j.ajhg.2017.12.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kerkhof J, Rastin C, Levy MA, Relator R, McConkey H, Demain L, et al. Diagnostic utility and reporting recommendations for clinical DNA methylation episignature testing in genetically undiagnosed rare diseases. Genet Med 2024:101075. https://doi.org/10.1016/j.gim.2024.101075.

  21. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30:1363–9. https://doi.org/10.1093/bioinformatics/btu049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aref-Eshghi E, Bend EG, Colaiacovo S, Caudle M, Chakrabarti R, Napier M, et al. Diagnostic Utility of Genome-wide DNA Methylation Testing in Genetically Unsolved Individuals with Suspected Hereditary Conditions. Am J Hum Genet. 2019;104:685–700. https://doi.org/10.1016/j.ajhg.2019.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aref-Eshghi E, Kerkhof J, Pedro VP, Barat-Houari M, Ruiz-Pallares N, Andrau J-C, et al. Evaluation of DNA Methylation Episignatures for Diagnosis and Phenotype Correlations in 42 Mendelian Neurodevelopmental Disorders. American J Hum Genet. 2020;106:356–70. https://doi.org/10.1016/j.ajhg.2020.01.019.

    Article  CAS  Google Scholar 

  24. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47–e47. https://doi.org/10.1093/nar/gkv007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ho DE, Imai K, King G, Stuart EA. MatchIt: Nonparametric Preprocessing for Parametric Causal Inference. J Stat Softw 2011;42. https://doi.org/10.18637/jss.v042.i08.

  26. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinforma. 2012;13:86. https://doi.org/10.1186/1471-2105-13-86.

    Article  Google Scholar 

  27. Levy MA, Relator R, McConkey H, Pranckeviciene E, Kerkhof J, Barat-Houari M, et al. Functional correlation of genome-wide DNA methylation profiles in genetic neurodevelopmental disorders. Hum Mutat. 2022;43:1609–28. https://doi.org/10.1002/humu.24446.

    Article  CAS  PubMed  Google Scholar 

  28. Kolde, R. pheatmap: Pretty Heatmaps. R package version 1.0.12; 2019. Available from: https://CRAN.R-project.org/package=pheatmap.

  29. Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30:2811–2. https://doi.org/10.1093/bioinformatics/btu393.

    Article  CAS  PubMed  Google Scholar 

  30. Cavalcante RG, Sartor MA. annotatr: genomic regions in context. Bioinformatics. 2017;33:2381–3. https://doi.org/10.1093/bioinformatics/btx183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cardoso MA, Rizzardi LEA, Kume LW, Groeneveld CS, Trefflich S, Morais DAA, et al. TreeAndLeaf: an R/Bioconductor package for graphs and trees with focus on the leaves. Bioinformatics. 2022;38:1463–4. https://doi.org/10.1093/bioinformatics/btab819.

    Article  CAS  PubMed  Google Scholar 

  32. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics Med. 2015;17:405–24. https://doi.org/10.1038/gim.2015.30.

    Article  Google Scholar 

  33. Haghshenas S, Foroutan A, Bhai P, Levy MA, Relator R, Kerkhof J, et al. Identification of a DNA methylation signature for Renpenning syndrome (RENS1), a spliceopathy. Eur J Human Genet 2023. https://doi.org/10.1038/s41431-023-01313-z.

  34. Vos N, Reilly J, Elting MW, Campeau PM, Coman D, Stark Z, et al. DNA methylation episignatures are sensitive and specific biomarkers for detection of patients with KAT6A / KAT6B variants. Epigenomics 2023. https://doi.org/10.2217/epi-2023-0079.

  35. Rooney K, van der Laan L, Trajkova S, Haghshenas S, Relator R, Lauffer P, et al. DNA methylation episignature and comparative epigenomic profiling of HNRNPU-related neurodevelopmental disorder. Genetics Med. 2023;25:100871. https://doi.org/10.1016/j.gim.2023.100871.

    Article  CAS  Google Scholar 

  36. Kojima H, Sadahiro T, Muraoka N, Yamakawa H, Hashimoto H, Ishii R, et al. MEF2C/p300-mediated epigenetic remodeling promotes the maturation of induced cardiomyocytes. Stem Cell Rep. 2023;18:1274–83. https://doi.org/10.1016/j.stemcr.2023.05.001.

    Article  CAS  Google Scholar 

  37. Aref-Eshghi E, Schenkel LC, Lin H, Skinner C, Ainsworth P, Paré G, et al. The defining DNA methylation signature of Kabuki syndrome enables functional assessment of genetic variants of unknown clinical significance. Epigenetics. 2017;12:923–33. https://doi.org/10.1080/15592294.2017.1381807.

    Article  PubMed  PubMed Central  Google Scholar 

  38. van Jaarsveld RH, Reilly J, Cornips M-C, Hadders MA, Agolini E, Ahimaz P, et al. Delineation of a KDM2B-related neurodevelopmental disorder and its associated DNA methylation signature. Genetics Med. 2023;25:49–62. https://doi.org/10.1016/j.gim.2022.09.006.

    Article  CAS  Google Scholar 

  39. Levy MA, Beck DB, Metcalfe K, Douzgou S, Sithambaram S, Cottrell T, et al. Deficiency of TET3 leads to a genome-wide DNA hypermethylation episignature in human whole blood. NPJ Genom Med. 2021;6:92 https://doi.org/10.1038/s41525-021-00256-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Uchino S, Waga C. SHANK3 as an autism spectrum disorder-associated gene. Brain Dev. 2013;35:106–10. https://doi.org/10.1016/j.braindev.2012.05.013.

    Article  PubMed  Google Scholar 

  41. Wright CF, Quaife NM, Ramos-Hernández L, Danecek P, Ferla MP, Samocha KE, et al. Non-coding region variants upstream of MEF2C cause severe developmental disorder through three distinct loss-of-function mechanisms. Am J Hum Genet. 2021;108:1083–94. https://doi.org/10.1016/j.ajhg.2021.04.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Basu S, Ro EJ, Liu Z, Kim H, Bennett A, Kang S, et al. The Mef2c Gene Dose-Dependently Controls Hippocampal Neurogenesis and the Expression of Autism-Like Behaviors. J Neurosci 2024;44. https://doi.org/10.1523/JNEUROSCI.1058-23.2023.

  43. Bai G, Yuan R, Yuan J, Liu Y, Zhao S, Zhang X. A rare Coffin-Siris syndrome induced by SOX11: a de novo nonsense variant of short stature. BMC Med Genomics. 2024;17:1–9. https://doi.org/10.1186/S12920-024-02036-W/TABLES/2.

    Article  Google Scholar 

  44. Ding Y, Chen J, Tang Y, Chen LN, Yao RE, Yu T, et al. Identification and functional analysis of novel SOX11 variants in Chinese patients with Coffin-Siris syndrome 9. Front Genet 2022;13. https://doi.org/10.3389/FGENE.2022.940776.

  45. Li J, Yu Y, Zhao J, Zhang J, Wang Y, Ding K, et al. Genetic variants of the type-3 metabotropic glutamate receptor gene associated with human spatial localization ability. Gene Rep. 2021;23:101135. https://doi.org/10.1016/j.genrep.2021.101135.

    Article  CAS  Google Scholar 

  46. Bonnet M, Roche F, Fagotto-Kaufmann C, Gazdagh G, Truong I, Comunale F, et al. Pathogenic TRIO variants associated with neurodevelopmental disorders perturb the molecular regulation of TRIO and axon pathfinding in vivo. Mol Psychiatry. 2023;28:1527–44. https://doi.org/10.1038/s41380-023-01963-x.

    Article  CAS  PubMed  Google Scholar 

  47. Zhu S, Tao M, Li Y, Wang X, Zhao Z, Liu Y, et al. H3K27me3 of Rnf19a promotes neuroinflammatory response during Japanese encephalitis virus infection. J Neuroinflammat. 2023;20:168. https://doi.org/10.1186/s12974-023-02852-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We extend our gratitude to the participants and their families for their invaluable contribution.

Funding

Funding for this study is provided in part by the Government of Canada through Genome Canada and the Ontario Genomics Institute (OGI-188).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AS, BS; Data curation: AS JK; Formal analysis: AS, SH, MAL, RR; Funding acquisition: BS; Sample Collection: SAS, AV, IV, IES, KAM, MLT, JACC; Investigation: AS, MAL, JK, RR; Methodology: AS, MAL, RR; Project administration: HM, BS; Software: AS, MAL, RR; Supervision: BS; Validation: AS, SH, LVDL; Visualization: AS; Writing-original draft: AS; Writing-review and editing: AS, LVDL, SH, BS, JACC.

Corresponding author

Correspondence to Bekim Sadikovic.

Ethics declarations

Competing interests

BS is a shareholder in EpiSign Inc involved in commercial applications of EpiSign™ technology.

Ethical approval

All samples and data records were anonymized to protect the identities of the individuals involved. The research protocol received ethical approval from the Research Ethics Board (REB 106302) at Western University and the Institutional Review Board (IRB) of Self Regional Healthcare. Informed consent was obtained from physicians for the utilization of clinical information pertaining to the described patients.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A., Haghshenas, S., van der Laan, L. et al. Identification of an episignature for the MEF2C-associated syndrome. Eur J Hum Genet 34, 53–60 (2026). https://doi.org/10.1038/s41431-025-01983-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41431-025-01983-x

This article is cited by

Search

Quick links