Abstract
Ultrasound biomicroscopy (UBM) is the only available option for noninvasive, high-resolution imaging of the intricate iridociliary complex, and for anterior segment imaging with corneal haze or opacity. While these unique features render UBM essential for specific types of trauma, congenital anomalies, and anterior segment tumors, UBM imaging has found clinical utility in a broad spectrum of diseases for structural assessments not limited to the anterior intraocular anatomy, but also for eyelid and orbit anatomy. This imaging tool has a very specific niche in the pediatric population where anterior segment disease can be accompanied by corneal opacity or clouding, and anomalies posterior to the iris may be present. Pediatric patients present additional diagnostic challenges. They are often unable to offer detailed histories or fully cooperate with examination, thus amplifying the need for high-resolution imaging. This purpose of this systematic review is to identify and synthesize the body of literature involving use of UBM to describe, evaluate, diagnose, or optimize treatment of pediatric ocular disease. The collated peer-reviewed research details the utility of this imaging modality, clarifies the structures and diseases most relevant for this tool, and describes quantitative and qualitative features of UBM imaging among pediatric subjects. This summary will include information about the specific applications available to enhance clinical care for pediatric eye disease.
摘要
对于复杂的虹膜睫状体结构以及合并角膜混浊或不透明的眼前节进行非侵入性、高分辨率成像, 超声生物显微镜(UBM)是唯一选择。虽然这些特征使UBM对于特定类型的创伤、先天性畸形和眼前节肿瘤的诊断是必要的, 但人们已经在广泛的疾病谱中, 发现了UBM成像在结构评估中的临床用途。其不仅可用于眼内前节解剖, 也可用于眼睑和眼眶解剖的评估。在儿童群体中, 无论伴有角膜混浊或是云翳的眼前节疾病, 该成像工具都有非常特殊的地位。对于儿科患者的诊断, 医生会面临额外的挑战。儿童通常无法提供详细病史也无法全力配合相关检查, 因此对高分辨率成像的需求更大。本综述的目的是针对涉及应用UBM对儿童眼病进行描述、评估、诊断或优化治疗的文献进行筛选与整合。所筛选出的研究详细说明了这种成像方式的用途, 阐明了最适用于该工具的结构和疾病, 并描述了儿童受试者UBM成像的定量和定性特征。同时, 本文得出的结论将包括可用于加强儿童眼病临床护理的具体应用。
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Marmor MF, Wickramasinghe HK, Lemons RA. Acoustic microscopy of the human retina and pigment epithelium. Invest Ophthalmol Vis Sci. 1977;16:660–6.
Pavlin CJ, Sherar MD, Foster FS. Subsurface ultrasound microscopic imaging of the intact eye. Ophthalmology. 1990;97:244–50. https://doi.org/10.1016/S0161-6420(90)32598-8.
Izatt JA, Hee MR, Swanson EA, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994;112:1584–9. https://doi.org/10.1001/archopht.1994.01090240090031.
Yi J, Yun J, Li Z-K, Xu C-T, Pan B-R. Epidemiology and molecular genetics of congenital cataracts. Int J Ophthalmol. 2011;4:422–32. https://doi.org/10.3980/j.issn.2222-3959.2011.04.20.
Cillino S, Casuccio A, Di Pace F, Pillitteri F, Cillino G. A five-year retrospective study of the epidemiological characteristics and visual outcomes of patients hospitalized for ocular trauma in a Mediterranean area. BMC Ophthalmol. 2008;8:6. https://doi.org/10.1186/1471-2415-8-6.
Päivönsalo-Hietanen T, Tuominen J, Saari KM. Uveitis in children: population-based study in Finland. Acta Ophthalmol Scand. 2000;78:84–8. https://doi.org/10.1034/j.1600-0420.2000.078001084.x.
Edelsten C, Reddy MA, Stanford MR, Graham EM. Visual loss associated with pediatric uveitis in english primary and referral centers. Am J Ophthalmol. 2003;135:676–80. https://doi.org/10.1016/s0002-9394(02)02148-7.
Kurilec JM, Zaidman GW. Incidence of Peters anomaly and congenital corneal opacities interfering with vision in the United States. Cornea. 2014;33:848–50. https://doi.org/10.1097/ICO.0000000000000182.
Biglan AW. Glaucoma in children: are we making progress? J AAPOS. 2006;10:7–21. https://doi.org/10.1016/j.jaapos.2005.10.001.
Aponte EP, Diehl N, Mohney BG. Incidence and clinical characteristics of childhood glaucoma: a population-based study. Arch Ophthalmol. 2010;128:478–82. https://doi.org/10.1001/archophthalmol.2010.41.
Nelson LB, Spaeth GL, Nowinski TS, Margo CE, Jackson L. Aniridia. A review. Surv Ophthalmol. 1984;28:621–42. https://doi.org/10.1016/0039-6257(84)90184-x.
Zetterström C, Lundvall A, Kugelberg M. Cataracts in children. J Cataract Refract Surg. 2005;31:824–40. https://doi.org/10.1016/j.jcrs.2005.01.012.
Watts P, Smith D, MacKeen L, Kraft S, Buncic JR, Abdolell M. Evaluation of the ultrasound biomicroscope in strabismus surgery. J AAPOS. 2002;6:187–90. https://doi.org/10.1067/mpa.2002.122365.
Hoşal BM, Ayer NG, Zilelioǧlu G, Elhan AH. Ultrasound biomicroscopy of the levator aponeurosis in congenital and aponeurotic blepharoptosis. Ophthalmic Plast Reconstr Surg. 2004;20:308–11. https://doi.org/10.1097/01.IOP.0000129532.33913.E7.
Mungan N, Nischal KK, Héon E, MacKeen L, Balfe JW, Levin AV. Ultrasound biomicroscopy of the eye in cystinosis. Arch Ophthalmol. 2000;118:1329–1333. https://doi.org/10.1001/archopht.118.10.1329.
Morales J, Chaudhry IA, Bosley TM. Glaucoma and globe enlargement associated with neurofibromatosis type 1. Ophthalmology. 2009;116:1725–30. https://doi.org/10.1016/j.ophtha.2009.06.019.
Kelberman D, Islam L, Jacques TS, et al. CYP1B1-related anterior segment developmental anomalies: Novel mutations for infantile glaucoma and von Hippel’s ulcer revisited. Ophthalmology. 2011;118:1865–73. https://doi.org/10.1016/j.ophtha.2011.01.044.
Wang X, Liu X, Huang L, et al. Mutation survey of candidate genes and genotype–phenotype analysis in 20 Southeastern Chinese patients with Axenfeld–Rieger syndrome. Curr Eye Res. 2018;43:1334–41. https://doi.org/10.1080/02713683.2018.1493129.
Engels BF, Dietlein TS, Jacobi PC, Krieglstein GK. Ultrasound biomicroscopy diagnosis of congenital glaucoma. Klin Monbl Augenheilkd. 1999;215:338–41. https://doi.org/10.1055/s-2008-1034728.
Gupta V, Jha R, Srinivasan G, Dada T, Sihota R. Ultrasound biomicroscopic characteristics of the anterior segment in primary congenital glaucoma. J AAPOS. 2007;11:546–50. https://doi.org/10.1016/j.jaapos.2007.06.014.
Hussein TR, Shalaby SM, Elbakary MA, Elseht RM, Gad RE. Ultrasound biomicroscopy as a diagnostic tool in infants with primary congenital glaucoma. Clin Ophthalmol. 2014;8:1725–30. https://doi.org/10.2147/OPTH.S66682.
Tandon A, Watson C, Ayyala R. Ultrasound biomicroscopy measurement of Schlemm’s canal in pediatric patients with and without glaucoma. J AAPOS. 2017;21:234–7. https://doi.org/10.1016/j.jaapos.2017.03.011.
Andrews L, Kueny L, Martinez C, et al. Structural changes of the ciliary body and ciliary processes measured by ultrasound biomicroscopy of primary congenital glaucoma in comparison to glaucoma following congenital cataract surgery. J Am Assoc Pediatr Ophthalmol Strabismus. 2019;23:e15–6. https://doi.org/10.1016/j.jaapos.2019.08.049.
Kueny LS, Andrews L, Martinez C, et al. Structural changes of the anterior segment measured by ultrasound biomicroscopy in pediatric glaucoma. J Am Assoc Pediatr Ophthalmol Strabismus. 2019;23:e37. https://doi.org/10.1016/j.jaapos.2019.08.132.
Shi Y, Han Y, Xin C, et al. Disease-related and age-related changes of anterior chamber angle structures in patients with primary congenital glaucoma: an in vivo high-frequency ultrasound biomicroscopybased study. PLoS ONE. 2020;15. https://doi.org/10.1371/journal.pone.0227602.
Linn Murphree A. Intraocular retinoblastoma: the case for a new group classification. Ophthalmol Clin N Am. 2005;18:41–53. https://doi.org/10.1016/j.ohc.2004.11.003. viii
Chawla B, Bhaskaran K, Dada T, Bajaj MS, Kashyap S, Shende D. Evaluation of the role of ultrasound biomicroscopy in advanced retinoblastoma: a prospective study on Asian Indian children. Ophthalmic Genet. 2020;41:125–30. https://doi.org/10.1080/13816810.2020.1737946.
Munier FL, Soliman S, Moulin AP, Gaillard M-C, Balmer A, Beck-Popovic M. Profiling safety of intravitreal injections for retinoblastoma using an anti-reflux procedure and sterilisation of the needle track. Br J Ophthalmol. 2012;96:1084–7. https://doi.org/10.1136/bjophthalmol-2011-301016.
Berry JL, Bechtold M, Shah S, et al. Not all seeds are created equal: seed classification is predictive of outcomes in retinoblastoma. Ophthalmology. 2017;124:1817–25. https://doi.org/10.1016/j.ophtha.2017.05.034.
Chen Q, Gu J, Jiang R, Zhou M, Chang Q. Role of ultrasound biomicroscopy in diagnosis of ocular toxocariasis. Br J Ophthalmol. 2018;102:642–6. https://doi.org/10.1136/bjophthalmol-2017-310583.
Zhou M, Chang Q, Gonzales JA, et al. Clinical characteristics of ocular toxocariasis in Eastern China. Graefe’s Arch Clin Exp Ophthalmol. 2012;250:1373–8. https://doi.org/10.1007/s00417-012-1971-2.
Liu J, Li S, Deng G, Yang W, Chen W, Lu H. Ultrasound biomicroscopic imaging in paediatric ocular toxocariasis. Br J Ophthalmol. 2017;101:1514–7. https://doi.org/10.1136/bjophthalmol-2016-309850.
da Costa DS, Lowder C, de Moraes HV Jr, Oréfice F. A relação entre o comprimento dos processos ciliares medidos pela biomicroscopia ultra-sônica e a duração, localização e gravidade das uveítes [The relationship between the length of ciliary processes as measured by ultrasound biomicroscopy and the duration, localization and severity of uveitis]. Arq Bras Oftalmol. 2006;69:383–8. https://doi.org/10.1590/s0004-27492006000300018.
Gupta P, Gupta A, Gupta V, Singh R. Successful outcome of pars plana vitreous surgery in chronic hypotony due to uveitis. Retina. 2009;29:638–43. https://doi.org/10.1097/IAE.0b013e31819a5fd8.
Long T, Xu Y, Wu X, Zhao J, Li Y, Xie L. IOL position [corrected] in pediatric eyes [published correction appears in Ophthalmology]. Ophthalmology. 2013;120:212–212.e2123. https://doi.org/10.1016/j.ophtha.2012.08.039.
Zhao YE, Gong XH, Zhu XN, et al. Long-term outcomes of ciliary sulcus versus capsular bag fixation of intraocular lenses in children: an ultrasound biomicroscopy study. PLoS ONE. 2017;12. https://doi.org/10.1371/journal.pone.0172979.
Arraes C, Endriss D, Lobato F, Arraes J, Ventura M. Subluxação congênita do cristalino: resultados visuais e posição das lentes intraoculares após a cirurgia [Congenital lens subluxation: visual acuity outcomes and intraocular lens postoperative position]. Arq Bras Oftalmol. 2010;73:171–4. https://doi.org/10.1590/s0004-27492010000200014.
Catal J, Cuadras D, Castany-Aregall M, et al. Anterior iris-claw intraocular lens implantation for the management of nontraumatic ectopia lentis: long-term outcomes in a paediatric cohort. 2017:170–4. https://doi.org/10.1111/aos.13192.
Rastogi A, Goray A, Thacker P, Kamlesh Babita. Assessment of the safety and efficacy of primary retropupillary fixation of iris-claw intraocular lenses in children with large lens subluxations. Int Ophthalmol. 2018;38:1985–92. https://doi.org/10.1007/s10792-017-0688-y.
Rastogi A. Evaluation of functional outcome and stability of sutureless scleral tunnel fixated IOLs in children with ectopia lentis. Int J Ophthalmol. 2020;13:66–70. https://doi.org/10.18240/ijo.2020.01.10.
Kamal AM, Hanafy M, Ehsan A, Tomerak RH. Ultrasound biomicroscopy comparison of ab interno and ab externo scleral fixation of posterior chamber intraocular lenses. J Cataract Refract Surg. 2009;35:881–4. https://doi.org/10.1016/j.jcrs.2009.01.006.
Sewelam A, Ismail AM, El Serogy H. Ultrasound biomicroscopy of haptic position after transscleral fixation of posterior chamber intraocular lenses. J Cataract Refract Surg. 2001;27:1418–22. https://doi.org/10.1016/s0886-3350(01)00791-x.
Long J, Xiang D, Guo Z, et al. Clinical characteristics and surgical procedures for children with congenital membranous cataract. J Ophthalmol. 2017;2017. https://doi.org/10.1155/2017/2370969.
Xiang D, Chen L, Hu L, Song S, Xie W, Long J. Image features of lens opacity in pediatric cataracts using ultrasound biomicroscopy. J AAPOS. 2016;20:519–22.e4. https://doi.org/10.1016/j.jaapos.2016.08.014.
El Shakankiri NM, Bayoumi NH, Abdallah AH, El Sahn MMF. Role of ultrasound and biomicroscopy in evaluation of anterior segment anatomy in congenital and developmental cataract cases. J Cataract Refract Surg. 2009;35:1893–905. https://doi.org/10.1016/j.jcrs.2009.07.007.
Elfiky M, Saad H, Elseht R, Selima A. Role of ultrasound biomicroscopy in the planning for secondary implantation of intra ocular lens in aphakia. Int Ophthalmol. 2016;36:391–400. https://doi.org/10.1007/s10792-015-0141-z.
You C, Wu X, Ying L, Xie L. Ultrasound biomicroscopy imaging of sclerotomy in children with cataract undergoing 25-gauge sutureless pars plana anterior vitrectomy. Eur J Ophthalmol. 2010;20:1053–8. https://doi.org/10.1177/112067211002000605.
Nishijima K, Takahashi K, Yamakawa R. Ultrasound biomicroscopy of the anterior segment after congenital cataract surgery. Am J Ophthalmol. 2000;130:483–9. https://doi.org/10.1016/s0002-9394(00)00524-9.
Özdal MP, Mansour M, Deschênes J. Ultrasound biomicroscopic evaluation of the traumatized eyes. Eye 2003;17:467–72. https://doi.org/10.1038/sj.eye.6700382.
Moura MFde, Hayashi I, Rocha DM, Allemann N. Evaluation of anterior segment foreign bodies with ultrasound biomicroscopy. Arq Bras Oftalmol. 2012;75:122–5. https://doi.org/10.1590/s0004-27492012000200010.
Mohammadi SF, Zandian M, Fakhraie G, et al. Ultrasound biomicroscopy findings in fireworks-related blunt eye injuries. Eur J Ophthalmol. 2012;22:342–8. https://doi.org/10.5301/ejo.5000017.
Lin Y, Liang X, Liu X, et al. Prognostic factors and visual outcome for fireworks-related burns during spring festival in South China. J Burn Care Res. 2012;33:e108–13. https://doi.org/10.1097/BCR.0b013e3182335998.
Zhou SY, Wang CX, Cai XY, Huang D, Liu YZ. Optical coherence tomography and ultrasound biomicroscopy imaging of opaque corneas. Cornea. 2013;32:e25–30. https://doi.org/10.1097/ICO.0b013e318261eb2b.
Nischal KK, Naor J, Jay V, MacKeen LD, Rootman DS. Clinicopathological correlation of congenital corneal opacification using ultrasound biomicroscopy. Br J Ophthalmol. 2002;86:62–9. https://doi.org/10.1136/bjo.86.1.62.
Rezende RA, Uchoa UBC, Uchoa R, Rapuano CJ, Laibson PR, Cohen EJ. Congenital corneal opacities in a cornea referral practice. Cornea. 2004;23:565–70. https://doi.org/10.1097/01.ico.0000126317.90271.d8.
Darusman KR, Wong IB. Ultrasound biomicroscopy imaging in pediatric patients. J Am Assoc Pediatr Ophthalmol Strabismus. 2012;16:e30. https://doi.org/10.1016/j.jaapos.2011.12.116.
Chen WS, Xiang DM, Hu LX. Ultrasound biomicroscopy detects Peters’ Anomaly and Rieger’s Anomaly in Infants. J Ophthalmol. 2020;2020. https://doi.org/10.1155/2020/8346981.
Miao S, Lin Q, Liu Y, Song YW, Zhang YN, Pan ZQ. Clinicopathologic features and treatment characteristics of congenital corneal opacity infants and children aged 3 years or less: a retrospective single institution analysis. Med Princ Pract. 2020;29:18–24. https://doi.org/10.1159/000501763.
Mireskandari K, Ali A, Elbaz U, Strungaru H. Characterizing the phenotypic spectrum of Peters anomaly: from mild to severe disease. Investig Ophthalmol Vis Sci. 2015;56:1553.
Nakagawa T, Maeda N, Okazaki N, Hori Y, Nishida K, Tano Y. Ultrasound biomicroscopic examination of acute hydrops in patients with keratoconus. Am J Ophthalmol. 2006;141:1134–1136. https://doi.org/10.1016/j.ajo.2005.12.043.
Sharma N, Mannan R, Jhanji V, et al. Ultrasound biomicroscopy-guided assessment of acute corneal hydrops. Ophthalmology. 2011;118:2166–71. https://doi.org/10.1016/j.ophtha.2011.03.040.
Miranda D, Sartori M, Francesconi C, Allemann N, Ferrara P, Campos M. Ferrara intrastromal corneal ring segments for severe keratoconus. J Refract Surg. 2003;19:645–53. https://doi.org/10.3928/1081-597X-20031101-06.
Harding SA, Nischal KK, Upponi-Patil A, Fowler DJ. Indications and outcomes of deep anterior lamellar keratoplasty in children. Ophthalmology. 2010;117:2191–5. https://doi.org/10.1016/j.ophtha.2010.03.025.
Maripudi S, Byrd J, Qureshi A, et al. Pediatric Corneal Structural Development During Childhood Characterized by Ultrasound Biomicroscopy. J Pediatr Ophthalmol Strabismus. 2020;57:238–245. https://doi.org/10.3928/01913913-20200506-01.
Emery J, Ho D, Mackeen L, Héon E, Bissonnette B. Pupillary reflex dilation and skin temperature to sensory level during combined general and caudal anesthesia in children. Paediatr Anaesth. 2004;14:768–73. https://doi.org/10.1111/j.1460-9592.2004.01308.x.
Dai S, Kraft SP, Smith DR, Buncic JR. Ultrasound biomicroscopy in strabismus reoperations. J AAPOS. 2006;10:202–5. https://doi.org/10.1016/j.jaapos.2006.01.209.
Khan HA, Smith DR, Kraft SP. Localising rectus muscle insertions using high frequency wide-field ultrasound biomicroscopy. Br J Ophthalmol. 2012;96:683–7. https://doi.org/10.1136/bjophthalmol-2011-300960.
Mirmohammadsadeghi A, Manuchehri V, Akbari MR. The accuracy of wide-field ultrasound biomicroscopy in localizing extraocular rectus muscle insertions in strabismus reoperations. J AAPOS. 2017;21:463–6.e1. https://doi.org/10.1016/j.jaapos.2017.07.209.
Thakur N, Singh R, Kaur S, Kumar A, Phuljhele S, Sukhija J. Ultrasound biomicroscopy in strabismus surgery: Efficacy in postoperative assessment of horizontal muscle insertions. Strabismus. 2015;23:73–9. https://doi.org/10.3109/09273972.2015.1025987.
Solarte CE, Smith DR, Buncic JR, Tehrani NN, Kraft SP. Evaluation of vertical rectus muscles using ultrasound biomicroscopy. J AAPOS. 2008;12:128–31. https://doi.org/10.1016/j.jaapos.2007.06.019.
Bajaj MS, Aalok L, Gupta V, Sen S, Pushker N, Chandra M. Ultrasound biomicroscopic appearances of eyelid lesions at 50 MHz. J Clin Ultrasound. 2007;35:424–9. https://doi.org/10.1002/jcu.20368.
Surve A, Meel R, Pushker N, Bajaj M. Ultrasound biomicroscopy image patterns in normal upper eyelid and congenital ptosis in the Indian population. Indian J Ophthalmol. 2018;66:383–8. https://doi.org/10.4103/ijo.IJO_915_17.
Zhang YS, Zhou Q, Zhang J, et al. Local retro-orbicularis oculus fat (ROOF) resection in upper blepharoplasty: A retrospective evaluation study of 65 bilateral upper blepharoplasties. J Plast Reconstr Aesthet Surg. 2019;72:1373–8. https://doi.org/10.1016/j.bjps.2019.04.010.
El-Zawahry MBM, Abdel El-Hameed El-Cheweikh HM, Abd-El-Rahman Ramadan S, Ahmed Bassiouny D, Mohamed Fawzy M. Ultrasound biomicroscopy in the diagnosis of skin diseases. Eur J Dermatol. 2007;17:469–75. https://doi.org/10.1684/ejd.2007.0261.
Al-Faky YH. Anatomical utility of ultrasound biomicroscopy in the lacrimal drainage system. Br J Ophthalmol. 2011;95:1446–50. https://doi.org/10.1136/bjo.2010.195479.
Al-Faky YH. Physiological utility of ultrasound biomicroscopy in the lacrimal drainage system. Br J Ophthalmol. 2013;97:1325–9. https://doi.org/10.1136/bjophthalmol-2013-303662.
Sharma A, Ali A, Henderson RH, Patel CK, VandenHoven C, Lam WC. Accuracy of scleral transillumination techniques to identify infant ciliary body for sclerostomy and intravitreal injections. Clin Exp Ophthalmol. 2019;47:478–83. https://doi.org/10.1111/ceo.13442.
Li Z, Li Y, Huang X, et al. Quantitative analysis of rhegmatogenous retinal detachment associated with choroidal detachment in cinese using UBM. Retina. 2012;32:2020–5. https://doi.org/10.1097/IAE.0b013e3182561f7c.
Nakagawa N, Kinoshita I, Hayashi H, Oshima K. Biometry of the ciliary body in premature eyes using ultrasound biomicroscope. Jpn J Ophthalmol. 1996;50:1145–8.
Kobayashi H, Kiryu J, Kobayashi K, Kondo T. Ultrasound biomicroscopic measurement of anterior chamber angle in premature infants. Br J Ophthalmol. 1997;81:460–4. https://doi.org/10.1136/bjo.81.6.460.
Anaya-Olvera A, Martinez-Castellanos MA, Lechuga R, Mayorquin-Ruiz M. Ultrasound biomicroscopy of anterior segment in premature infants. Invest. Ophthalmol. Vis. Sci. 2014;55:4867.
Ludwig K, Wegscheider E, Hoops JP, Kampik A. In vivo imaging of the human zonular apparatus with high-resolution ultrasound biomicroscopy. Graefes Arch Clin Exp Ophthalmol. 1999;237:361–71. https://doi.org/10.1007/s004170050245.
Bacskulin A, Martin H, Kundt G, Terwee T, Guthoff R. Analyse der Dynamik des Ziliarmuskels während der Akkommodation [Analysis of the dynamics of the ciliary muscle during accommodation]. Ophthalmologe. 2000;97:855–9. https://doi.org/10.1007/s003470070008.
Tsuchiya AK, Tanaka K, Sakurada I, Oba S, Mizuki N. Ultrasound biomicroscopic measurement of anterior chamber biometry between before and after pupil dilation in children. Eur J Ophthalmol. 2008;18:532–9. https://doi.org/10.1177/112067210801800405.
Kobayashi H, Kobayashi K. Quantitative comparison of Zeiss-Humphrey model 840 and Rion UX-02 systems of ultrasound biomicroscopy. Graefe’s Arch Clin Exp Ophthalmol. 1999;237:381–6. https://doi.org/10.1007/s004170050248.
Kobayashi H, Ono H, Kiryu J, Kobayashi K, Kondo T. Ultrasound biomicroscopic measurement of development of anterior chamber angle. Br J Ophthalmol. 1999;83:559–62. https://doi.org/10.1136/bjo.83.5.559.
Le KH, Stoleru G, Jaafar MS, et al. Normal ciliary body growth using anterior segment ultrasound biomicroscopy. J Am Assoc Pediatr Ophthalmol Strabismus. 2017;21:e24. https://doi.org/10.1016/j.jaapos.2017.07.080.
Snook KA, Zhao J-Z, Alves CHF, et al. Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49:169–76. https://doi.org/10.1109/58.985701.
Ritter TA, Shrout TR, Tutwiler R, Shung KK. A 30-MHz piezo-composite ultrasound array for medical imaging applications. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49:217–30. https://doi.org/10.1109/58.985706.
Liu C, Djuth FT, Zhou Q, Shung KK. Micromachining techniques in developing high-frequency piezoelectric composite ultrasonic array transducers. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60:2615–25. https://doi.org/10.1109/TUFFC.2013.2860.
Cannata JM, Williams JA, Zhang L, Hu C-H, Shung KK. A high-frequency linear ultrasonic array utilizing an interdigitally bonded 2-2 piezo-composite. IEEE Trans Ultrason Ferroelectr Freq Control. 2011;58:2202–12. https://doi.org/10.1109/TUFFC.2011.2070.
Liu C, Zhou Q, Djuth FT, Shung KK. High-frequency (>50 MHz) medical ultrasound linear arrays fabricated from micromachined bulk PZT materials. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59:315–8. https://doi.org/10.1109/TUFFC.2012.2193.
Sun Y, Xie H, Liu J, et al. In vivo validation of a bimodal technique combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy for diagnosis of oral carcinoma. J Biomed Opt. 2012;17:116003. https://doi.org/10.1117/1.JBO.17.11.116003.
Ramasubramanian V, Glasser A. Prediction of accommodative optical response in prepresbyopic subjects using ultrasound biomicroscopy. J Cataract Refract Surg. 2015;41:964–80. https://doi.org/10.1016/j.jcrs.2014.12.049.
Qureshi A, Chen H, Saeedi O, et al. Anterior segment ultrasound biomicroscopy image analysis using ImageJ software: Intra-observer repeatability and inter-observer agreement. Int Ophthalmol. 2019;39:829–37. https://doi.org/10.1007/s10792-018-0882-6.
Alexander JL, Maripudi S, Kannan K, Kaleem M, Saeedi OJ, Levin MR, Madigan WP. Assessment of a novel open access tool for automated evaluation of anterior segment structures in patients with and without glaucoma. Presented to the American Academy of Ophthalmology, Chicago, IL, USA. October, 2018.
Shi G, Jiang Z, Deng G, et al. Automatic classification of anterior chamber angle using ultrasound biomicroscopy and deep learning. Transl Vis Sci Technol. 2019;8:25. https://doi.org/10.1167/tvst.8.4.25.
Nahum Y, Galor O, Atar M, Bahar I, Livny E. Real-time intraoperative ultrasound biomicroscopy for determining graft orientation during Descemet’s membrane endothelial keratoplasty. Acta Ophthalmol. 2020. https://doi.org/10.1111/aos.14515.
Zhu X-J, Zhang K-K, He W-W, Sun X-H, Meng F-R, Lu Y. Diagnosis of pupillary block glaucoma after removal of congenital cataracts with intraoperative ultrasound biomicroscopy: a case report. BMC Ophthalmol. 2016;16:58. https://doi.org/10.1186/s12886-016-0238-9.
Funding
JLA has grant support from the UMB ICTR/Clinical Science and Translational Science KL2 Award 1KL2TR003099-01 and R43EY030798-01. JLB has grant support from National Cancer Institute of the NIH Award K08CA232344, Hyundai Hope on Wheels, and The Wright Foundation. JLB has indirect support provided by The Larry and Celia Moh Foundation, The Institute for Families, Inc., Children’s Hospital Los Angeles, an unrestricted departmental grant from Research to Prevent Blindness, The National Institute of Health P30EY029220, The National Cancer Institute P30CA014089.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Alexander, J.L., Wei, L., Palmer, J. et al. A systematic review of ultrasound biomicroscopy use in pediatric ophthalmology. Eye 35, 265–276 (2021). https://doi.org/10.1038/s41433-020-01184-4
Received:
Revised:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41433-020-01184-4
This article is cited by
-
Classifications of anterior segment structure of congenital corneal opacity in infants and toddlers by ultrasound biomicroscopy and slit-lamp microscopic photographs: an observational study
BMC Ophthalmology (2024)
-
Pediatric orbital lesions: ocular pathologies
Pediatric Radiology (2024)
-
Preoperative Structural Risk Factors for Glaucoma After Penetrating Keratoplasty for Congenital Corneal Opacity: An Observational Study
Ophthalmology and Therapy (2024)
-
Management of presumed trematode-induced granulomatous intermediate uveitis
Eye (2023)
-
Update on Imaging Modalities for Ocular Surface Pathologies
Current Ophthalmology Reports (2021)


