Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A case-control study of peripapillary microvascular structure by OCT-angiography in non-arteritic ischaemic optic neuropathy at early and resolutive stages

Abstract

Objectives

To analyse peripapillary and papillary superficial microvascularization using OCT-angiography (OCT-A) in patients with non-arteritic ischaemic optic neuropathy (NAION) at the acute and resolutive stages.

Methods

This retrospective case-control study conducted between October 2018 and November 2019 included 23 NAION subjects at the acute stage (onset <1 month) and 20 patients at the resolutive stage (onset >3 months). NAION and contralateral eyes were compared to control eyes of patients (n = 50) matched 1:1 for refractive error, sex, age, systemic hypertension, diabetes, and sleep apnoea syndrome. The acquisition of OCT-A (OCTA-SD Cirrus 5000, Carl Zeiss) in 6 × 6 mm format centred on the papilla allowed measurement of the radial peripapillary plexus. A commercialized algorithm was used to obtain maps of density and microvascular retinal and papillary retinal perfusion, by positioning an ETDRS grid centred on the optic nerve head.

Results

There was significant decrease in peripapillary density and microvascular perfusion values for NAION eyes both at the acute and resolutive stages compared to the contralateral and control eyes, mainly in the temporal sectors. Papillary vascular density and perfusion were significantly increased in NAION and contralateral eyes compared to control eyes. There was no significant difference in peripapillary density or peripapillary vascular perfusion between contralateral and control eyes.

Conclusion

Eyes in the acute and resolutive phases of NAION exhibit decreased microvascular density and peripapillary capillary perfusion. Increased papillary vascular density and perfusion seem to be an intrinsic characteristic of the optic nerves of both eyes in patients who develop NAION.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow chart of the population of NAION patients and controls.

Similar content being viewed by others

Data availability

Data are available upon request to Christophe Chiquet (cchiquet@chu-grenoble.fr).

References

  1. Lee MS, Grossman D, Arnold AC, Sloan FA. Incidence of nonarteritic anterior ischemic optic neuropathy: increased risk among diabetic patients. Ophthalmology. 2011;118:959–63.

    Article  PubMed  Google Scholar 

  2. Hayreh SS. Ischemic optic neuropathy. Prog Retin Eye Res. 2009;28:34–62.

    Article  PubMed  Google Scholar 

  3. Aptel F, Khayi H, Pépin J-L, Tamisier R, Levy P, Romanet J-P, et al. Association of nonarteritic ischemic optic neuropathy with obstructive sleep apnea syndrome: consequences for obstructive sleep apnea screening and treatment. JAMA Ophthalmol. 2015;133:797.

    Article  PubMed  Google Scholar 

  4. Fraser CL. Update on obstructive sleep apnea for neuro-ophthalmology. Curr Opin Neurol. 2019;32:124–30.

    Article  PubMed  Google Scholar 

  5. Sun M-H, Lee C-Y, Liao YJ, Sun C-C. Nonarteritic anterior ischaemic optic neuropathy and its association with obstructive sleep apnoea: a health insurance database study. Acta Ophthalmol. 2019;97:e64–e70.

    Article  PubMed  Google Scholar 

  6. Guyer DR, Miller NR, Auer CL, Fine SL. The risk of cerebrovascular and cardiovascular disease in patients with anterior ischemic optic neuropathy. Arch Ophthalmol. 1985;103:1136–42.

    Article  PubMed  CAS  Google Scholar 

  7. Hayreh SS, Joos KM, Podhajsky PA, Long CR. Systemic diseases associated with nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol. 1994;118:766–80.

    Article  PubMed  CAS  Google Scholar 

  8. Repka MX, Savino PJ, Schatz NJ, Sergott RC. Clinical profile and long-term implications of anterior ischemic optic neuropathy. Am J Ophthalmol. 1983;96:478–83.

    Article  PubMed  CAS  Google Scholar 

  9. Giambene B, Sodi A, Sofi F, Marcucci R, Fedi S, Abbate R, et al. Evaluation of traditional and emerging cardiovascular risk factors in patients with non-arteritic anterior ischemic optic neuropathy: a case-control study. Graefe’s Arch Clin Exp Ophthalmol. 2009;247:693–7.

    Article  Google Scholar 

  10. Talks SJ, Chong NHV, Gibson JM, Dodson PM. Fibrinogen, cholesterol and smoking as risk factors for non-arteritic anterior ischaemic optic neuropathy. Eye. 1995;9:85–88.

    Article  PubMed  Google Scholar 

  11. Salomon O. Analysis of prothrombotic and vascular risk factors in patients with nonarteritic anterior ischemic optic neuropathy. Ophthalmology. 1999;106:739–42.

    Article  PubMed  CAS  Google Scholar 

  12. Anon. Characteristics of patients with nonarteritic anterior ischemic optic neuropathy eligible for the ischemic optic neuropathy decompression trial. Arch Ophthalmol. 1996;114:1366.

    Article  Google Scholar 

  13. Chung SM, Gay CA, McCrary JA. Nonarteritic ischemic optic neuropathy. Ophthalmology. 1994;101:779–82.

    Article  PubMed  CAS  Google Scholar 

  14. Doro S, Lessell S. Cup-disc ratio and ischemic optic neuropathy. Arch Ophthalmol. 1985;103:1143–4.

    Article  PubMed  CAS  Google Scholar 

  15. Beck RW, Savino PJ, Repka MX, Schatz NJ, Sergott RC. Optic disc structure in anterior ischemic optic neuropathy. Ophthalmology. 1984;91:1334–7.

    Article  PubMed  CAS  Google Scholar 

  16. Burde RM. Optic disk risk factors for nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol. 1993;116:759–64.

    Article  PubMed  CAS  Google Scholar 

  17. Feit RH, Tomsak RL, Ellenberger C. Structural factors in the pathogenesis of ischemic optic neuropathy. Am J Ophthalmol. 1984;98:105–8.

    Article  PubMed  CAS  Google Scholar 

  18. Salomon O, Huna-Baron R, Steinberg DM, Kurtz S, Seligsohn U. Role of aspirin in reducing the frequency of second eye involvement in patients with non-arteritic anterior ischaemic optic neuropathy. Eye. 1999;13:357–9.

    Article  PubMed  Google Scholar 

  19. Newman NJ, Scherer R, Langenberg P, Kelman S, Feldon S, Kaufman D, et al. The fellow eye in NAION: report from the ischemic optic neuropathy decompression trial follow-up study. Am J Ophthalmol 2002;134:317–28.

    Article  PubMed  Google Scholar 

  20. Attyé A, Jean C, Remond P, Peyrin C, Lecler A, Boudiaf N, et al. Track-weighted imaging for neuroretina: evaluations in healthy volunteers and ischemic optic neuropathy: retinal tractography in ischemic disease. J Magn Reson Imaging. 2018;48:737–47.

    Article  Google Scholar 

  21. Sawle GV, James CB, Russell RW. The natural history of non-arteritic anterior ischaemic optic neuropathy. J Neurol Neurosurg Psychiatry 1990;53:830–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kupersmith MJ, Frohman L, Sanderson M, Jacobs J, Hirschfeld J, Ku C, et al. Aspirin reduces the incidence of second eye NAION: a retrospective study. J Neuroophthalmol. 1997;17:250–3.

    Article  PubMed  CAS  Google Scholar 

  23. Beri M, Klugman MR, Kohler JA, Singh Hayreh S. Anterior ischemic optic neuropathy. Ophthalmology. 1987;94:1020–8.

    Article  PubMed  CAS  Google Scholar 

  24. Scherer RW, Feldon SE, Levin L, Langenberg P, Katz J, Keyl PM, et al. Visual fields at follow-up in the ischemic optic neuropathy decompression trial. Ophthalmology. 2008;115:1809–17.

    Article  PubMed  Google Scholar 

  25. Aptel F, Aryal-Charles N, Tamisier R, Pépin J-L, Lesoin A, Chiquet C. Visual field defects of the contralateral eye of non-arteritic ischemic anterior optic neuropathy: are they related to sleep apnea? Graefe’s Arch Clin Exp Ophthalmol. 2017;255:1229–36.

    Article  Google Scholar 

  26. Rebolleda G, Díez-Álvarez L, García Marín Y, de Juan V, Muñoz-Negrete FJ. Reduction of peripapillary vessel density by optical coherence tomography angiography from the acute to the atrophic stage in non-arteritic anterior ischaemic optic neuropathy. Ophthalmologica. 2018;240:1–9.

  27. Rougier M-B, Le Goff M, Korobelnik J-F. Optical coherence tomography angiography at the acute phase of optic disc edema. Eye Vis (Lond). 2018;5:15.

    Article  PubMed  Google Scholar 

  28. Remond P, Aptel F, Cunnac P, Labarere J, Palombi K, Pepin J-L, et al. Retinal vessel phenotype in patients with nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol. 2019;208:178–84.

    Article  PubMed  Google Scholar 

  29. Hayreh SS, Podhajsky PA, Zimmerman B. Ocular manifestations of giant cell arteritis. Am J Ophthalmol. 1998;125:509–20.

    Article  PubMed  CAS  Google Scholar 

  30. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14:540–5.

    Article  PubMed  CAS  Google Scholar 

  31. Rosenfeld PJ, Durbin MK, Roisman L, Zheng F, Miller A, Robbins G, et al. ZEISS AngioplexTM Spectral Domain Optical Coherence Tomography Angiography: Technical Aspects. In: Bandello F, Souied EH, Querques G (eds). Developments in Ophthalmology. Vol 56. S. Karger AG; 2016. pp. 18–29. https://www.karger.com/Article/FullText/442773.

  32. Ozcan Y, Ozcaliskan S, Balci S, Artunay O. The correlation of radial peripapillary capillary density measurements with optic nerve head morphology and retinal nerve fiber layer thickness in healthy eyes. Photodiagnosis Photodyn Ther. 2020;32:102008.

    Article  PubMed  Google Scholar 

  33. Balducci N, Morara M, Veronese C, Barboni P, Casadei NL, Savini G, et al. Optical coherence tomography angiography in acute arteritic and non-arteritic anterior ischemic optic neuropathy. Graefes Arch Clin Exp Ophthalmol 2017;255:2255–61.

    Article  PubMed  Google Scholar 

  34. Sharma S, Ang M, Najjar RP, Sng C, Cheung CY, Rukmini AV, et al. Optical coherence tomography angiography in acute non-arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol. 2017;101:1045–51.

    Article  PubMed  Google Scholar 

  35. Rougier M-B, Delyfer M-N, Korobelnik J-F. OCT angiography of acute non-arteritic anterior ischemic optic neuropathy. J Fr Ophtalmol. 2017;40:102–9.

    Article  PubMed  Google Scholar 

  36. Wright Mayes E, Cole ED, Dang S, Novais EA, Vuong L, Mendoza-Santiesteban C, et al. Optical coherence tomography angiography in nonarteritic anterior ischemic optic neuropathy. J Neuroophthalmol. 2017;37:358–64.

    Article  PubMed  Google Scholar 

  37. Gaier ED, Wang M, Gilbert AL, Rizzo JF, Cestari DM, Miller JB. Quantitative analysis of optical coherence tomographic angiography (OCT-A) in patients with non-arteritic anterior ischemic optic neuropathy (NAION) corresponds to visual function. PLoS ONE. 2018;13:e0199793.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Song Y, Min J-Y, Mao L, Gong Y-Y. Microvasculature dropout detected by the optical coherence tomography angiography in nonarteritic anterior ischemic optic neuropathy. Lasers Surg Med. 2018;50:194–201.

    Article  PubMed  Google Scholar 

  39. Fard MA, Jalili J, Sahraiyan A, Khojasteh H, Hejazi M, Ritch R, et al. Optical coherence tomography angiography in optic disc swelling. Am J Ophthalmol 2018;191:116–23.

    Article  PubMed  Google Scholar 

  40. Fard MA, Ghahvechian H, Sahrayan A, Subramanian PS. Early macular vessel density loss in acute ischemic optic neuropathy compared to papilledema: implications for pathogenesis. Trans Vis Sci Tech 2018;7:10.

    Article  Google Scholar 

  41. Pierro L, Arrigo A, Aragona E, Cavalleri M, Bandello F. Vessel density and vessel tortuosity quantitative analysis of arteritic and non-arteritic anterior ischemic optic neuropathies: an optical coherence tomography angiography study. JCM. 2020;9:1094.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Abri Aghdam K, Ashraf Khorasani M, Soltan Sanjari M, Habibi A, Shenazandi H, Kazemi P, et al. Optical coherence tomography angiography features of optic nerve head drusen and nonarteritic anterior ischemic optic neuropathy. Can J Ophthalmol. 2019;54:495–500.

    Article  PubMed  Google Scholar 

  43. Al-Nashar HY, Hemeda S. Assessment of peripapillary vessel density in acute non-arteritic anterior ischemic optic neuropathy. Int Ophthalmol. 2020;40:1269–76.

    Article  PubMed  Google Scholar 

  44. Yu PK, Cringle SJ, Yu D-Y. Correlation between the radial peripapillary capillaries and the retinal nerve fibre layer in the normal human retina. Exp Eye Res. 2014;129:83–92.

    Article  PubMed  CAS  Google Scholar 

  45. Liu C-H, Kao L-Y, Sun M-H, Wu W-C, Chen HS-L. Retinal vessel density in optical coherence tomography angiography in optic atrophy after nonarteritic anterior ischemic optic neuropathy. J Ophthalmol. 2017;2017:9632647.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hata M, Oishi A, Muraoka Y, Miyamoto K, Kawai K, Yokota S, et al. Structural and functional analyses in nonarteritic anterior ischemic optic neuropathy: optical coherence tomography angiography study. J Neuroophthalmol. 2017;37:140–8.

    Article  PubMed  Google Scholar 

  47. Augstburger E, Zéboulon P, Keilani C, Baudouin C, Labbé A. Retinal and choroidal microvasculature in nonarteritic anterior ischemic optic neuropathy: an optical coherence tomography angiography study. Invest Ophthalmol Vis Sci 2018;59:870–7.

    Article  PubMed  Google Scholar 

  48. Mastropasqua R, Agnifili L, Borrelli E, Fasanella V, Brescia L, Di Antonio L, et al. Optical coherence tomography angiography of the peripapillary retina in normal-tension glaucoma and chronic nonarteritic anterior ischemic optic neuropathy. Curr Eye Res. 2018;43:778–84.

    Article  PubMed  Google Scholar 

  49. Fard MA, Yadegari S, Ghahvechian H, Moghimi S, Soltani-Moghaddam R, Subramanian PS. Optical coherence tomography angiography of a pale optic disc in demyelinating optic neuritis and ischemic optic neuropathy. J Neuro-Ophthalmol. 2019;39:339–44.

    Article  Google Scholar 

  50. Fard MA, Salabati M, Mahmoudzadeh R, Kafieh R, Hojati S, Safizadeh M, et al. Automated evaluation of parapapillary choroidal microvasculature in ischemic optic neuropathy and open angle glaucoma. Invest Ophthalmol Vis Sci 2020;61:35–35.

    Article  Google Scholar 

  51. Dhiman R, Chawla R, Azad SV, Kumar P, Gupta V, Kumar A, et al. Peripapillary retinal and choroidal perfusion in nonarteritic ischemic optic neuropathy using optical coherence tomography angiography. Optom Vis Sci. 2020;97:583–90.

    Article  PubMed  Google Scholar 

  52. Vitis LAD, Benatti L, Tomasso L, Baldin G, Carnevali A, Querques L, et al. Comparison of the performance of two different spectral-domain optical coherence tomography angiography devices in clinical practice. ORE. 2016;56:155–62.

    Google Scholar 

  53. Aghsaei Fard M, Ghahvechian H, Subramanian PS. Follow-up of nonarteritic anterior ischemic optic neuropathy with optical coherence tomography angiography. J Neuroophthalmol. 2021;41:e433–e439.

    Article  PubMed  Google Scholar 

  54. Liu C-H, Wu W-C, Sun M-H, Kao L-Y, Lee Y-S, Chen HS-L. Comparison of the retinal microvascular density between open angle glaucoma and nonarteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci 2017;58:3350–6.

    Article  PubMed  CAS  Google Scholar 

  55. Wang X, Jia Y, Spain R, Potsaid B, Liu JJ, Baumann B, et al. Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthalmol. 2014;98:1368–73.

    Article  PubMed  Google Scholar 

  56. Rougier M-B, Delyfer M-N, Korobelnik J-F. OCT angiography and choroidal ischemia related to arteritic anterior ischemic optic neuropathy. J Fr Ophtalmol. 2017;40:438–9.

    Article  PubMed  Google Scholar 

  57. Chua J, Chin CWL, Hong J, Chee ML, Le T-T, Ting DSW, et al. Impact of hypertension on retinal capillary microvasculature using optical coherence tomographic angiography. J Hypertens. 2019;37:572–80.

    Article  PubMed  CAS  Google Scholar 

  58. Durbin MK, An L, Shemonski ND, Soares M, Santos T, Lopes M, et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 2017;135:370.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yang JY, Wang Q, Yan YN, Zhou WJ, Wang YX, Wu SL, et al. Microvascular retinal changes in pre-clinical diabetic retinopathy as detected by optical coherence tomographic angiography. Graefes Arch Clin Exp Ophthalmol. 2020;258:513–20.

    Article  PubMed  CAS  Google Scholar 

  60. Tan B, Chua J, Lin E, Cheng J, Gan A, Yao X, et al. Quantitative microvascular analysis with wide-field optical coherence tomography angiography in eyes with diabetic retinopathy. JAMA Netw Open. 2020;3:e1919469.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ucak T, Unver E. Alterations in parafoveal and optic disc vessel densities in patients with obstructive sleep apnea syndrome. J Ophthalmol. 2020;2020:1–9.

    Article  Google Scholar 

  62. Ghasemi Falavarjani K, Al-Sheikh M, Akil H, Sadda SR. Image artefacts in swept-source optical coherence tomography angiography. Br J Ophthalmol. 2017;101:564–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Alison Foote (a medical writer based in Grenoble France) for editing our manuscript.

Funding

We thank the Association for Research and Teaching in Ophthalmology (ARFO, Grenoble, France) for a research grant.

Author information

Authors and Affiliations

Authors

Contributions

CC conceived the study, obtained funding, designed and coordinated the study with the assistance of JLP. JC, KR, FA, FBV, OA, CC screened potentially eligible patients, extracted clinical data, analysed the data, and interpreted the results. JC and RK searched the literature. SB and JC performed the statistical analysis. CC, JC, KR, FA, FBV and JLP contributed to writing the article. OA and SB reviewed the manuscript.

Corresponding author

Correspondence to Christophe Chiquet.

Ethics declarations

Competing interests

We thank the Association for Research and Teaching in Ophthalmology (ARFO, Grenoble, France) for a research grant. None of the authors have a conflict of interest to declare. Neither the study sponsor nor funding organization had a role in the design or conduct of this research.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castelain, J., Romdhane, K., Aptel, F. et al. A case-control study of peripapillary microvascular structure by OCT-angiography in non-arteritic ischaemic optic neuropathy at early and resolutive stages. Eye 39, 771–778 (2025). https://doi.org/10.1038/s41433-024-03439-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41433-024-03439-w

Search

Quick links