Abstract
Objectives
To analyse peripapillary and papillary superficial microvascularization using OCT-angiography (OCT-A) in patients with non-arteritic ischaemic optic neuropathy (NAION) at the acute and resolutive stages.
Methods
This retrospective case-control study conducted between October 2018 and November 2019 included 23 NAION subjects at the acute stage (onset <1 month) and 20 patients at the resolutive stage (onset >3 months). NAION and contralateral eyes were compared to control eyes of patients (n = 50) matched 1:1 for refractive error, sex, age, systemic hypertension, diabetes, and sleep apnoea syndrome. The acquisition of OCT-A (OCTA-SD Cirrus 5000, Carl Zeiss) in 6 × 6 mm format centred on the papilla allowed measurement of the radial peripapillary plexus. A commercialized algorithm was used to obtain maps of density and microvascular retinal and papillary retinal perfusion, by positioning an ETDRS grid centred on the optic nerve head.
Results
There was significant decrease in peripapillary density and microvascular perfusion values for NAION eyes both at the acute and resolutive stages compared to the contralateral and control eyes, mainly in the temporal sectors. Papillary vascular density and perfusion were significantly increased in NAION and contralateral eyes compared to control eyes. There was no significant difference in peripapillary density or peripapillary vascular perfusion between contralateral and control eyes.
Conclusion
Eyes in the acute and resolutive phases of NAION exhibit decreased microvascular density and peripapillary capillary perfusion. Increased papillary vascular density and perfusion seem to be an intrinsic characteristic of the optic nerves of both eyes in patients who develop NAION.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 18 print issues and online access
$259.00 per year
only $14.39 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others
Data availability
Data are available upon request to Christophe Chiquet (cchiquet@chu-grenoble.fr).
References
Lee MS, Grossman D, Arnold AC, Sloan FA. Incidence of nonarteritic anterior ischemic optic neuropathy: increased risk among diabetic patients. Ophthalmology. 2011;118:959–63.
Hayreh SS. Ischemic optic neuropathy. Prog Retin Eye Res. 2009;28:34–62.
Aptel F, Khayi H, Pépin J-L, Tamisier R, Levy P, Romanet J-P, et al. Association of nonarteritic ischemic optic neuropathy with obstructive sleep apnea syndrome: consequences for obstructive sleep apnea screening and treatment. JAMA Ophthalmol. 2015;133:797.
Fraser CL. Update on obstructive sleep apnea for neuro-ophthalmology. Curr Opin Neurol. 2019;32:124–30.
Sun M-H, Lee C-Y, Liao YJ, Sun C-C. Nonarteritic anterior ischaemic optic neuropathy and its association with obstructive sleep apnoea: a health insurance database study. Acta Ophthalmol. 2019;97:e64–e70.
Guyer DR, Miller NR, Auer CL, Fine SL. The risk of cerebrovascular and cardiovascular disease in patients with anterior ischemic optic neuropathy. Arch Ophthalmol. 1985;103:1136–42.
Hayreh SS, Joos KM, Podhajsky PA, Long CR. Systemic diseases associated with nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol. 1994;118:766–80.
Repka MX, Savino PJ, Schatz NJ, Sergott RC. Clinical profile and long-term implications of anterior ischemic optic neuropathy. Am J Ophthalmol. 1983;96:478–83.
Giambene B, Sodi A, Sofi F, Marcucci R, Fedi S, Abbate R, et al. Evaluation of traditional and emerging cardiovascular risk factors in patients with non-arteritic anterior ischemic optic neuropathy: a case-control study. Graefe’s Arch Clin Exp Ophthalmol. 2009;247:693–7.
Talks SJ, Chong NHV, Gibson JM, Dodson PM. Fibrinogen, cholesterol and smoking as risk factors for non-arteritic anterior ischaemic optic neuropathy. Eye. 1995;9:85–88.
Salomon O. Analysis of prothrombotic and vascular risk factors in patients with nonarteritic anterior ischemic optic neuropathy. Ophthalmology. 1999;106:739–42.
Anon. Characteristics of patients with nonarteritic anterior ischemic optic neuropathy eligible for the ischemic optic neuropathy decompression trial. Arch Ophthalmol. 1996;114:1366.
Chung SM, Gay CA, McCrary JA. Nonarteritic ischemic optic neuropathy. Ophthalmology. 1994;101:779–82.
Doro S, Lessell S. Cup-disc ratio and ischemic optic neuropathy. Arch Ophthalmol. 1985;103:1143–4.
Beck RW, Savino PJ, Repka MX, Schatz NJ, Sergott RC. Optic disc structure in anterior ischemic optic neuropathy. Ophthalmology. 1984;91:1334–7.
Burde RM. Optic disk risk factors for nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol. 1993;116:759–64.
Feit RH, Tomsak RL, Ellenberger C. Structural factors in the pathogenesis of ischemic optic neuropathy. Am J Ophthalmol. 1984;98:105–8.
Salomon O, Huna-Baron R, Steinberg DM, Kurtz S, Seligsohn U. Role of aspirin in reducing the frequency of second eye involvement in patients with non-arteritic anterior ischaemic optic neuropathy. Eye. 1999;13:357–9.
Newman NJ, Scherer R, Langenberg P, Kelman S, Feldon S, Kaufman D, et al. The fellow eye in NAION: report from the ischemic optic neuropathy decompression trial follow-up study. Am J Ophthalmol 2002;134:317–28.
Attyé A, Jean C, Remond P, Peyrin C, Lecler A, Boudiaf N, et al. Track-weighted imaging for neuroretina: evaluations in healthy volunteers and ischemic optic neuropathy: retinal tractography in ischemic disease. J Magn Reson Imaging. 2018;48:737–47.
Sawle GV, James CB, Russell RW. The natural history of non-arteritic anterior ischaemic optic neuropathy. J Neurol Neurosurg Psychiatry 1990;53:830–3.
Kupersmith MJ, Frohman L, Sanderson M, Jacobs J, Hirschfeld J, Ku C, et al. Aspirin reduces the incidence of second eye NAION: a retrospective study. J Neuroophthalmol. 1997;17:250–3.
Beri M, Klugman MR, Kohler JA, Singh Hayreh S. Anterior ischemic optic neuropathy. Ophthalmology. 1987;94:1020–8.
Scherer RW, Feldon SE, Levin L, Langenberg P, Katz J, Keyl PM, et al. Visual fields at follow-up in the ischemic optic neuropathy decompression trial. Ophthalmology. 2008;115:1809–17.
Aptel F, Aryal-Charles N, Tamisier R, Pépin J-L, Lesoin A, Chiquet C. Visual field defects of the contralateral eye of non-arteritic ischemic anterior optic neuropathy: are they related to sleep apnea? Graefe’s Arch Clin Exp Ophthalmol. 2017;255:1229–36.
Rebolleda G, Díez-Álvarez L, García Marín Y, de Juan V, Muñoz-Negrete FJ. Reduction of peripapillary vessel density by optical coherence tomography angiography from the acute to the atrophic stage in non-arteritic anterior ischaemic optic neuropathy. Ophthalmologica. 2018;240:1–9.
Rougier M-B, Le Goff M, Korobelnik J-F. Optical coherence tomography angiography at the acute phase of optic disc edema. Eye Vis (Lond). 2018;5:15.
Remond P, Aptel F, Cunnac P, Labarere J, Palombi K, Pepin J-L, et al. Retinal vessel phenotype in patients with nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol. 2019;208:178–84.
Hayreh SS, Podhajsky PA, Zimmerman B. Ocular manifestations of giant cell arteritis. Am J Ophthalmol. 1998;125:509–20.
Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14:540–5.
Rosenfeld PJ, Durbin MK, Roisman L, Zheng F, Miller A, Robbins G, et al. ZEISS AngioplexTM Spectral Domain Optical Coherence Tomography Angiography: Technical Aspects. In: Bandello F, Souied EH, Querques G (eds). Developments in Ophthalmology. Vol 56. S. Karger AG; 2016. pp. 18–29. https://www.karger.com/Article/FullText/442773.
Ozcan Y, Ozcaliskan S, Balci S, Artunay O. The correlation of radial peripapillary capillary density measurements with optic nerve head morphology and retinal nerve fiber layer thickness in healthy eyes. Photodiagnosis Photodyn Ther. 2020;32:102008.
Balducci N, Morara M, Veronese C, Barboni P, Casadei NL, Savini G, et al. Optical coherence tomography angiography in acute arteritic and non-arteritic anterior ischemic optic neuropathy. Graefes Arch Clin Exp Ophthalmol 2017;255:2255–61.
Sharma S, Ang M, Najjar RP, Sng C, Cheung CY, Rukmini AV, et al. Optical coherence tomography angiography in acute non-arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol. 2017;101:1045–51.
Rougier M-B, Delyfer M-N, Korobelnik J-F. OCT angiography of acute non-arteritic anterior ischemic optic neuropathy. J Fr Ophtalmol. 2017;40:102–9.
Wright Mayes E, Cole ED, Dang S, Novais EA, Vuong L, Mendoza-Santiesteban C, et al. Optical coherence tomography angiography in nonarteritic anterior ischemic optic neuropathy. J Neuroophthalmol. 2017;37:358–64.
Gaier ED, Wang M, Gilbert AL, Rizzo JF, Cestari DM, Miller JB. Quantitative analysis of optical coherence tomographic angiography (OCT-A) in patients with non-arteritic anterior ischemic optic neuropathy (NAION) corresponds to visual function. PLoS ONE. 2018;13:e0199793.
Song Y, Min J-Y, Mao L, Gong Y-Y. Microvasculature dropout detected by the optical coherence tomography angiography in nonarteritic anterior ischemic optic neuropathy. Lasers Surg Med. 2018;50:194–201.
Fard MA, Jalili J, Sahraiyan A, Khojasteh H, Hejazi M, Ritch R, et al. Optical coherence tomography angiography in optic disc swelling. Am J Ophthalmol 2018;191:116–23.
Fard MA, Ghahvechian H, Sahrayan A, Subramanian PS. Early macular vessel density loss in acute ischemic optic neuropathy compared to papilledema: implications for pathogenesis. Trans Vis Sci Tech 2018;7:10.
Pierro L, Arrigo A, Aragona E, Cavalleri M, Bandello F. Vessel density and vessel tortuosity quantitative analysis of arteritic and non-arteritic anterior ischemic optic neuropathies: an optical coherence tomography angiography study. JCM. 2020;9:1094.
Abri Aghdam K, Ashraf Khorasani M, Soltan Sanjari M, Habibi A, Shenazandi H, Kazemi P, et al. Optical coherence tomography angiography features of optic nerve head drusen and nonarteritic anterior ischemic optic neuropathy. Can J Ophthalmol. 2019;54:495–500.
Al-Nashar HY, Hemeda S. Assessment of peripapillary vessel density in acute non-arteritic anterior ischemic optic neuropathy. Int Ophthalmol. 2020;40:1269–76.
Yu PK, Cringle SJ, Yu D-Y. Correlation between the radial peripapillary capillaries and the retinal nerve fibre layer in the normal human retina. Exp Eye Res. 2014;129:83–92.
Liu C-H, Kao L-Y, Sun M-H, Wu W-C, Chen HS-L. Retinal vessel density in optical coherence tomography angiography in optic atrophy after nonarteritic anterior ischemic optic neuropathy. J Ophthalmol. 2017;2017:9632647.
Hata M, Oishi A, Muraoka Y, Miyamoto K, Kawai K, Yokota S, et al. Structural and functional analyses in nonarteritic anterior ischemic optic neuropathy: optical coherence tomography angiography study. J Neuroophthalmol. 2017;37:140–8.
Augstburger E, Zéboulon P, Keilani C, Baudouin C, Labbé A. Retinal and choroidal microvasculature in nonarteritic anterior ischemic optic neuropathy: an optical coherence tomography angiography study. Invest Ophthalmol Vis Sci 2018;59:870–7.
Mastropasqua R, Agnifili L, Borrelli E, Fasanella V, Brescia L, Di Antonio L, et al. Optical coherence tomography angiography of the peripapillary retina in normal-tension glaucoma and chronic nonarteritic anterior ischemic optic neuropathy. Curr Eye Res. 2018;43:778–84.
Fard MA, Yadegari S, Ghahvechian H, Moghimi S, Soltani-Moghaddam R, Subramanian PS. Optical coherence tomography angiography of a pale optic disc in demyelinating optic neuritis and ischemic optic neuropathy. J Neuro-Ophthalmol. 2019;39:339–44.
Fard MA, Salabati M, Mahmoudzadeh R, Kafieh R, Hojati S, Safizadeh M, et al. Automated evaluation of parapapillary choroidal microvasculature in ischemic optic neuropathy and open angle glaucoma. Invest Ophthalmol Vis Sci 2020;61:35–35.
Dhiman R, Chawla R, Azad SV, Kumar P, Gupta V, Kumar A, et al. Peripapillary retinal and choroidal perfusion in nonarteritic ischemic optic neuropathy using optical coherence tomography angiography. Optom Vis Sci. 2020;97:583–90.
Vitis LAD, Benatti L, Tomasso L, Baldin G, Carnevali A, Querques L, et al. Comparison of the performance of two different spectral-domain optical coherence tomography angiography devices in clinical practice. ORE. 2016;56:155–62.
Aghsaei Fard M, Ghahvechian H, Subramanian PS. Follow-up of nonarteritic anterior ischemic optic neuropathy with optical coherence tomography angiography. J Neuroophthalmol. 2021;41:e433–e439.
Liu C-H, Wu W-C, Sun M-H, Kao L-Y, Lee Y-S, Chen HS-L. Comparison of the retinal microvascular density between open angle glaucoma and nonarteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci 2017;58:3350–6.
Wang X, Jia Y, Spain R, Potsaid B, Liu JJ, Baumann B, et al. Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthalmol. 2014;98:1368–73.
Rougier M-B, Delyfer M-N, Korobelnik J-F. OCT angiography and choroidal ischemia related to arteritic anterior ischemic optic neuropathy. J Fr Ophtalmol. 2017;40:438–9.
Chua J, Chin CWL, Hong J, Chee ML, Le T-T, Ting DSW, et al. Impact of hypertension on retinal capillary microvasculature using optical coherence tomographic angiography. J Hypertens. 2019;37:572–80.
Durbin MK, An L, Shemonski ND, Soares M, Santos T, Lopes M, et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 2017;135:370.
Yang JY, Wang Q, Yan YN, Zhou WJ, Wang YX, Wu SL, et al. Microvascular retinal changes in pre-clinical diabetic retinopathy as detected by optical coherence tomographic angiography. Graefes Arch Clin Exp Ophthalmol. 2020;258:513–20.
Tan B, Chua J, Lin E, Cheng J, Gan A, Yao X, et al. Quantitative microvascular analysis with wide-field optical coherence tomography angiography in eyes with diabetic retinopathy. JAMA Netw Open. 2020;3:e1919469.
Ucak T, Unver E. Alterations in parafoveal and optic disc vessel densities in patients with obstructive sleep apnea syndrome. J Ophthalmol. 2020;2020:1–9.
Ghasemi Falavarjani K, Al-Sheikh M, Akil H, Sadda SR. Image artefacts in swept-source optical coherence tomography angiography. Br J Ophthalmol. 2017;101:564–8.
Acknowledgements
We thank Alison Foote (a medical writer based in Grenoble France) for editing our manuscript.
Funding
We thank the Association for Research and Teaching in Ophthalmology (ARFO, Grenoble, France) for a research grant.
Author information
Authors and Affiliations
Contributions
CC conceived the study, obtained funding, designed and coordinated the study with the assistance of JLP. JC, KR, FA, FBV, OA, CC screened potentially eligible patients, extracted clinical data, analysed the data, and interpreted the results. JC and RK searched the literature. SB and JC performed the statistical analysis. CC, JC, KR, FA, FBV and JLP contributed to writing the article. OA and SB reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
We thank the Association for Research and Teaching in Ophthalmology (ARFO, Grenoble, France) for a research grant. None of the authors have a conflict of interest to declare. Neither the study sponsor nor funding organization had a role in the design or conduct of this research.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Castelain, J., Romdhane, K., Aptel, F. et al. A case-control study of peripapillary microvascular structure by OCT-angiography in non-arteritic ischaemic optic neuropathy at early and resolutive stages. Eye 39, 771–778 (2025). https://doi.org/10.1038/s41433-024-03439-w
Received:
Revised:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41433-024-03439-w


