Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Risk factor stratification in early-onset primary angle closure disease

Abstract

Purpose

To identify the potential biometric associations in patients with early-onset primary angle closure disease (EOPACD), and the relevant biometric cut-offs for distinguishing them.

Design

A prospective cross-sectional observational study.

Participants

The study included 190 eyes with EOPACD of 128 patients, aged 20–40 years (mean age 34.2 ± 6.0 years).

Methods

EOPACD (defined as primary angle closure presenting before 40 years of age) was classified into early-onset primary angle closure suspect (EOPACS), early-onset primary angle closure (EOPAC), and early-onset primary angle closure glaucoma (EOPACG) groups. The participants underwent a baseline clinical examination, including gonioscopy, ultrasound biomicroscopy, anterior segment ocular coherent tomography (ASOCT) and optical biometry (IOL Master). Statistical analysis was performed to identify risk factors associated with EOPACG such as axial length (AL), lens thickness (LT), lens vault (LV), anterior chamber depth (ACD), anterior chamber area (ACA) and other parameters on ASOCT.

Main outcome measures

To identify ocular biometric associations and potential cut-offs for distinguishing glaucoma eyes from suspects.

Results

Biometric measurements showed that the AL was the shortest, while ACD, ACA and ASOCT angle parameters were narrowest in eyes with EOPACG, as compared to EOPACS and EOPAC (p < 0.001; Bonferroni/Dunn test). Similarly, LV and LT were highest in eyes with EOPACG (p < 0.001). Logistic regression analysis revealed that ACD exhibited the highest predictive ability (ACD ≤ 2.73 mm, OR 4.36, AUC 0.72), followed by LT (LT ≥ 4.22 mm, OR 4.2, AUC 0.71) and ACA (ACA ≤ 17.24mm2, OR 3.04, AUC 0.7) for EOPACG.

Conclusions

This study highlights the significance of ocular biometric measurements, especially ACD and LT, which can assist in stratifying individuals with EOPACD for early detection of glaucoma. Thickening of the lens with the resultant crowded anterior chamber seemed to be the most prevalent biometric characteristic in eyes with frank glaucoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biometric comparison of eyes with EOPACD.
Fig. 2: Performance analysis of various parameters.

Similar content being viewed by others

Data availability

All the dataset generated in this study is available with the corresponding author (SG) on request.

References

  1. Bourne RRA, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, et al. Causes of vision loss worldwide, 1990–2010: a systematic analysis. Lancet Glob Health. 2013;1:e339–49.

    Article  PubMed  Google Scholar 

  2. Zhang N, Wang J, Chen B, Li Y, Jiang B. Prevalence of primary angle closure glaucoma in the last 20 years: a meta-analysis and systematic review. Front Med. 2020;7:624179.

    Article  Google Scholar 

  3. Zhang X, Guo PY, Lin C, Li F, Nguyen A, Sakata R, et al. Assessment of iris trabecular contact in eyes with gonioscopic angle-closure. Ophthalmology. 2023;130:111–9.

    Article  PubMed  Google Scholar 

  4. Appleby RS, Kinder RSL. Bilateral angle-closure glaucoma in a 14-year-old boy. Arch Ophthalmol. 1971;86:449–50.

    Article  PubMed  Google Scholar 

  5. Badlani VK, Quinones R, Wilensky JT, Hawkins A, Edward DP. Angle-closure glaucoma in teenagers. J Glaucoma. 2003;12:198–203.

    Article  PubMed  Google Scholar 

  6. Brosnan JD. Primary chronic angle-closure glaucoma in a young woman of 19 years-case repot. Trans Ophthalmol Soc NZ. 1973;25:130–2.

    CAS  Google Scholar 

  7. Sharma S. Bilateral angle closure glaucoma in a teenage girl. Paripex Indian J Res. 202;15;16–7.

  8. Alzuhairy S. Bilateral angle closure glaucoma in a teenage girl - a rare presentation in Arab population - a case report. Int J Health Sci. 2019;13:56–8.

    Google Scholar 

  9. Gao F, Wang J, Chen J, Wang X, Chen Y, Sun X. Etiologies and clinical characteristics of young patients with angle-closure glaucoma: a 15-year single-center retrospective study. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2021;259:2379–87.

    Article  Google Scholar 

  10. Ritch R, Chang BM, Liebmann JM. Angle closure in younger patients. Ophthalmology. 2003;110:1880–9.

    Article  PubMed  Google Scholar 

  11. Xu Y, Tan Q, Li C, Liu D. The ocular biometry characteristics of young patients with primary angle-closure glaucoma. BMC Ophthalmol. 2022;22:150.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xu BY, Friedman DS, Foster PJ, Jiang Y, Porporato N, Pardeshi AA, et al. Ocular biometric risk factors for progression of primary angle closure disease: the Zhongshan angle closure prevention trial. Ophthalmology. 2022;129:267–75.

    Article  PubMed  Google Scholar 

  13. Chen YY, Chen YY, Sheu SJ, Chou P. The biometric study in different stages of primary angle-closure glaucoma. Eye Lond Engl. 2013;27:1070–6.

    Google Scholar 

  14. Luo Q, Xue W, Yuan Y, Fu C, He J, Zou H, et al. Peripheral anterior chamber depth and screening techniques for primary angle closure disease in community elderly Chinese. BMC Ophthalmol. 2020;20:353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zhou S, Pardeshi AA, Burkemper B, Apolo G, Cho A, Jiang X, et al. Refractive error and anterior chamber depth as risk factors in primary angle closure disease: the Chinese American eye study. J Glaucoma. 2023;32:257–64.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang Y, Thomas R, Zhang Q, Li SZ, Wang NL. Progression of primary angle closure suspect to primary angle closure and associated risk factors: the Handan eye study. Invest Ophthalmol Vis Sci. 2021;62:2.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Razeghinejad MR, Banifatemi M. Ocular biometry in angle closure. J Ophthalmic Vis Res. 2013;8:17–24.

    PubMed  PubMed Central  Google Scholar 

  18. Sihota R, Lakshmaiah NC, Agarwal HC, Pandey RM, Titiyal JS. Ocular parameters in the subgroups of angle closure glaucoma. Clin Exp Ophthalmol. 2000;28:253–8.

    Article  PubMed  CAS  Google Scholar 

  19. Moghimi S, Vahedian Z, Zandvakil N, Mohammdi M, Fakhraie G, Nassiri N, et al. Role of lens vault in subtypes of angle closure in Iranian subjects. Eye. 2014;28:337–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wu RY, Nongpiur ME, He MG, Sakata LM, Friedman DS, Chan YH, et al. Association of narrow angles with anterior chamber area and volume measured with anterior-segment optical coherence tomography. Arch Ophthalmol Chic Ill 1960. 2011;129:569–74.

    Google Scholar 

  21. Jiang Y, Wang D, Wang W, Chen F, Wang L, Scheetz J, et al. Five-year changes in anterior segment parameters in an older population in urban southern China: the Liwan Eye Study. Br J Ophthalmol. 2020;104:582–7.

    Article  PubMed  Google Scholar 

  22. Baskaran M, Iyer JV, Narayanaswamy AK, He Y, Sakata LM, Wu R, et al. Anterior segment imaging predicts incident gonioscopic angle closure. Ophthalmology. 2015;122:2380–4.

    Article  PubMed  Google Scholar 

  23. Nongpiur ME, Aboobakar IF, Baskaran M, Narayanaswamy A, Sakata LM, Wu R, et al. Association of baseline anterior segment parameters with the development of incident gonioscopic angle closure. JAMA Ophthalmol. 2017;135:252.

    Article  PubMed  Google Scholar 

  24. Markowitz SN, Donald Morin J. The ratio of lens thickness to axial length for biometric standardization in angle-closure glaucoma. Am J Ophthalmol. 1985;99:400–2.

    Article  PubMed  CAS  Google Scholar 

  25. Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol. 2002;86:238–42.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hodapp EP, Parrish RK, Anderson DR. Clinical decisions in glaucoma. Mosby. 1993.

  27. Kumar G, Bali SJ, Panda A, Sobti A, Dada T. Prevalence of plateau iris configuration in primary angle closure glaucoma using ultrasound biomicroscopy in the Indian population. Indian J Ophthalmol. 2012;60:175–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Habibzadeh F, Habibzadeh P, Yadollahie M. On determining the most appropriate test cut-off value: the case of tests with continuous results. Biochem Medica. 2016;26:297–307.

  29. Zhang XL, Li A, Teng LL, Du SL, Zhu YY, Ge J. Primary chronic angle-closure glaucoma in younger patients. Int J Ophthalmol. 2007;7:613–7.

    Google Scholar 

  30. Kocak I, Altintas AG, Yalvac IS, Nurozler A, Kasim R, Duman S. Treatment of glaucoma in young nanophthalmic patients. Int Ophthalmol. 1997;20:107–11.

    Article  CAS  Google Scholar 

  31. Sun JH, Sung KR, Yun SC, Cheon MH, Tchah HW, Kim MJ, et al. Factors associated with anterior chamber narrowing with age: an optical coherence tomography study. Investig Opthalmol Vis Sci. 2012;53:2607.

    Article  Google Scholar 

  32. Shabana N, Aquino MC, See J, Ce Z, Tan AM, Nolan WP, et al. Quantitative evaluation of anterior chamber parameters using anterior segment optical coherence tomography in primary angle closure mechanisms. Clin Exp Ophthalmol. 2012;40:792–801.

    Article  PubMed  Google Scholar 

  33. Yadav SK, Panigrahi A, Gupta D, Gupta S, Gupta V. Potential utility of anterior segment optical coherence tomography and biometry in differentiating plateau iris configuration from pupillary block. Clin Exp Optom. 2024;1–7. https://doi.org/10.1080/08164622.2024.2428304.

  34. Aung T. Anterior chamber depth and the risk of primary angle closure in 2 East Asian Populations. Arch Ophthalmol. 2005;123:527.

    Article  PubMed  Google Scholar 

  35. Alsbirk PH. Anterior chamber depth and primary angle-closure glaucoma: I. An epidemiologic study in Greenland Eskimos. Acta Ophthalmol. 1975;53:89–104.

    Article  CAS  Google Scholar 

  36. Congdon NG, Quigley HA, Hung PT, Wang TH, Ho TC. Screening techniques for angle-closure glaucoma in rural Taiwan. Acta Ophthalmol Scand. 1996;74:113–9.

    Article  PubMed  CAS  Google Scholar 

  37. Devereux JG. Anterior chamber depth measurement as a screening tool for primary angle-closure glaucoma in an East Asian Population. Arch Ophthalmol. 2000;118:257.

    Article  PubMed  CAS  Google Scholar 

  38. Nongpiur ME, Sakata LM, Friedman DS, He M, Chan YH, Lavanya R, et al. Novel association of smaller anterior chamber width with angle closure in Singaporeans. Ophthalmology. 2010;117:1967–73.

    Article  PubMed  Google Scholar 

  39. Marchini G, Pagliarusco A, Toscano A, Tosi R, Brunelli C, Bonomi L. Ultrasound biomicroscopic and conventional ultrasonographic study of ocular dimensions in primary angle-closure glaucoma. Ophthalmology. 1998;105:2091–8.

    Article  PubMed  CAS  Google Scholar 

  40. Thomas R, George R, Parikh R, Muliyil J, Jacob A. Five year risk of progression of primary angle closure suspects to primary angle closure: a population based study. Br J Ophthalmol. 2003;87:450–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. George R, Paul PG, Baskaran M, Ramesh SV, Raju P, Arvind H, et al. Ocular biometry in occludable angles and angle closure glaucoma: a population based survey. Br J Ophthalmol. 2003;87:399–402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Nongpiur ME, He M, Amerasinghe N, Friedman DS, Tay WT, Baskaran M, et al. Lens vault, thickness, and position in Chinese subjects with angle closure. Ophthalmology. 2011;118:474–9.

    Article  PubMed  Google Scholar 

  43. Ozaki M, Nongpiur ME, Aung T, He M, Mizoguchi T. Increased lens vault as a risk factor for angle closure: confirmation in a Japanese population. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2012;250:1863–8.

    Article  Google Scholar 

  44. Kim YK, Yoo BW, Kim HC, Aung T, Park KH. Relative lens vault in subjects with angle closure. BMC Ophthalmol. 2014;14:93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Lowe RF. Aetiology of the anatomical basis for primary angle-closure glaucoma. Biometrical comparisons between normal eyes and eyes with primary angle-closure glaucoma. Br J Ophthalmol. 1970;54:161–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lan YW, Hsieh JW, Hung PT. Ocular biometry in acute and chronic angle-closure glaucoma. Ophthalmol J Int Ophtalmol Int J Ophthalmol Z Augenheilkd. 2007;221:388–94.

    Google Scholar 

  47. Moghimi S, Ramezani F, He M, Coleman AL, Lin SC. Comparison of anterior segment-optical coherence tomography parameters in phacomorphic angle closure and acute angle closure eyes. Invest Ophthalmol Vis Sci. 2015;56:7611–7. Dec.

    Article  PubMed  CAS  Google Scholar 

  48. Chakrabarti K, Samant S, Mohapatra R, Mishra S, Das S, Chakrabarti M. A comparison of lens parameters in patients with various subtypes of primary angle-closure disease and the normal population: a prospective study. Indian J Ophthalmol. 2022;70:2889.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li M, Chen Y, Jiang Z, Chen X, Chen J, Sun X. What are the characteristics of primary angle closure with longer axial length?. Investig Opthalmol Vis Sci. 2018;59:1354.

    Article  Google Scholar 

  50. Sherpa D, Badhu B. Association between axial length of the eye and primary angle closure glaucoma. Kathmandu Univ Med J. 1970;6:361–3.

    Article  Google Scholar 

  51. Van Romunde SHM, Thepass G, Lemij HG. Is hyperopia an important risk factor for PACG in the Dutch population? A case control study. J Ophthalmol. 2013;2013:1–6.

    Article  Google Scholar 

  52. Sihota R, Ghate D, Mohan S, Gupta V, Pandey RM, Dada T. Study of biometric parameters in family members of primary angle closure glaucoma patients. Eye. 2008;22:521–7.

    Article  PubMed  CAS  Google Scholar 

  53. Wang D, Huang W, Li Y, Zheng Y, Foster PJ, Congdon N, et al. Intraocular pressure, central corneal thickness, and glaucoma in Chinese adults: the Liwan eye study. Am J Ophthalmol. 2011;152:454–62.e1.

    Article  PubMed  Google Scholar 

  54. Pang CE, Lee KY, Su DH, Htoon HM, Ng JY, Kumar RS, et al. Central corneal thickness in chinese subjects with primary angle closure glaucoma. J Glaucoma. 2011;20:401–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SG, SY, VG had substantial contribution to the conception and design of the study. SG, SY, AP, SS, TV, AKP, SoS, and RS had substantial contribution to the acquisition and collection of data. SG, SY and AP contributed to the analysis and interpretation of data. SG, SY, and AP contributed to the drafting of the manuscript.

Corresponding author

Correspondence to Shikha Gupta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Yadav, S.K., Panigrahi, A. et al. Risk factor stratification in early-onset primary angle closure disease. Eye 39, 2604–2611 (2025). https://doi.org/10.1038/s41433-025-03884-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41433-025-03884-1

Search

Quick links