Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sustainability practices made easy

Abstract

Climate change is a significant challenge worldwide, with implications ranging from extreme weather events to rising sea levels and ecosystem disruptions. Addressing these issues requires a shift towards sustainable practices and global solutions. Healthcare and ophthalmology have a significant responsibility and an opportunity to reduce greenhouse gas emissions and waste, increase efficiency, and maintain safety and quality. Ophthalmology impact is relevant for the high number of patients and procedures, high patient volumes requiring travel to clinics, and extensive use of single-use disposable materials. Eye practices can be more sustainable by optimizing ventilation, using alcohol-based hand rubs, reducing drug waste by reusing medications, and reducing packaging waste. In patient management, we can reduce postoperative visits, evaluate bilateral surgeries, and minimize SF6 gas. The ophthalmology community should critically reassess daily practices to enhance sustainability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wong YL, Noor M, James KL, Aslam TM. Ophthalmology going greener: a narrative review. Ophthalmol Ther. 2021;10:845–57.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Buchan JC, Thiel CL, Steyn A, Somner J, Venkatesh R, Burton MJ, et al. Addressing the environmental sustainability of eye healthcare delivery: a scoping review. Lancet Planet Health. 2022;6:e524–34

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tennison I, Roschnik S, Ashby B, Boyd R, Hamilton I, Oreszczyn T, et al. Health care’s response to climate change: a carbon footprint assessment of the NHS in England. Lancet Planet Health. 2021;5:e84–92.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sherry B, Lee S, Ramos Cadena MLA, Laynor G, Patel SR, Simon MD, et al. How ophthalmologists can decarbonize eye care: a review of existing sustainability strategies and steps ophthalmologists can take. Ophthalmology. 2023;130:702–14.

    Article  PubMed  Google Scholar 

  5. Maheshwari A, Dave VP, March de Ribot F, et al. Sustainable ophthalmology: an overview of concepts and practices. Eye (Lond). Published online September 24, 2025. https://doi.org/10.1038/s41433-025-03999-5.

  6. Chang DF. Tackling the challenge of needless surgical waste in ophthalmology. J Cataract Refract Surg. 2023;49:333–8. https://doi.org/10.1097/j.jcrs.0000000000001175.

    Article  PubMed  Google Scholar 

  7. Pichler P, Jaccard I, Weisz U, Weisz H. International comparison of health care carbon footprints. Environ Res Lett. 2019;14:064004.

    Article  Google Scholar 

  8. Delivering a ‘Net Zero’ National Health Service. NHS England. 2022. https://www.england.nhs.uk/greenernhs/publication/delivering-a-net-zero-national-health-service/.

  9. The Royal College of Ophthalmologists. New workforce census illustrates the severe shortage of eye doctors in the UK. 2019. https://www.rcophth.ac.uk/news-views/new-rcophth-workforce-census-illustrates-the-severe-shortage-of-eye-doctors-in-the-uk/.

  10. Chang DF, Elferink S, Nuijts RMMA. Survey of ESCRS members’ attitudes toward operating room waste. J Cataract Refract Surg. 2023;49:341–7. https://doi.org/10.1097/j.jcrs.0000000000001096.

    Article  PubMed  Google Scholar 

  11. Dettenkofer M, Scherrer M, Hoch V, Glaser H, Schwarzer G, Zentner J, et al. Shutting down operating theater ventilation when the theater is not in use: infection control and environmental aspects. Infect Control Hosp Epidemiol. 2003;24:596–600. https://doi.org/10.1086/502260.

    Article  PubMed  Google Scholar 

  12. Zarzycka A, Maassen WH, Zeiler W. Energy saving opportunities in operating theaters: a literature study. REHVA J. 2019;2019:25–31.

    Google Scholar 

  13. Lans JLA, Mathijssen NMC, Traversari AAL, Jacobs IM, van den Dobbelsteen JJ, van der Elst M, et al. Capital and operational expenditures of different operating room air-handling installations with conventional or ultra-clean air supply systems. J Build Eng. 2023;78:107714. https://doi.org/10.1016/j.jobe.2023.107714.

    Article  Google Scholar 

  14. Song S, Chang DF, Ahmad U, Anand H, Ravindran RD, Venkatesh R, et al. Comparison of cataract surgery endophthalmitis rates in operating rooms with and without laminar air flow and HEPA filters. Am J Ophthalmol. 2025. https://doi.org/10.1016/j.ajo.2025.07.034.

  15. Javitt MJ, Grossman A, Grajewski A, Javitt JC. Association between eliminating water from surgical hand antisepsis at a large ophthalmic surgical hospital and cost. JAMA Ophthalmol. 2020;138:382–6. https://doi.org/10.1001/jamaophthalmol.2020.0048.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jehle K, Jarrett N, Matthews S. Clean and green: saving water in the operating theatre. Ann R Coll Surg Engl. 2008;90:22–4. https://doi.org/10.1308/003588408X242277.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shen NJ, Pan SC, Sheng WH, Tien KL, Chen ML, Chang SC, et al. Comparative antimicrobial efficacy of alcohol-based hand rub and conventional surgical scrub in a medical center. J Microbiol Immunol Infect. 2015;48:322–8. https://doi.org/10.1016/j.jmii.2013.08.005.

    Article  PubMed  CAS  Google Scholar 

  18. Parienti JJ, Thibon P, Heller R, Le Roux Y, von Theobald P, Bensadoun H, et al. Hand-rubbing with an aqueous alcoholic solution vs traditional surgical hand-scrubbing and 30-day surgical site infection rates: a randomized equivalence study. JAMA. 2002;288:722–7. https://doi.org/10.1001/jama.288.6.722.

    Article  PubMed  Google Scholar 

  19. Gasson S, Solari F, Jesudason EP. Sustainable hand surgery: incorporating water efficiency into clinical practice. Cureus. 2023;15:e38331. https://doi.org/10.7759/cureus.38331.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Palmer DJ, Robin AL, McCabe CM, Chang DF. Ophthalmic instrument cleaning and sterilization task force. Reducing topical drug waste in ophthalmic surgery: multisociety position paper. J Cataract Refract Surg. 2022;48:1073–7. https://doi.org/10.1097/j.jcrs.0000000000000975.

    Article  PubMed  Google Scholar 

  21. Berkowitz ST, Finn A, Sternberg P Jr, Patel S. Potential cost savings associated with a multiuse preoperative and preinjection eyedrop protocol. Ophthalmology. 2022;129:1305–12. https://doi.org/10.1016/j.ophtha.2022.06.023.

    Article  PubMed  Google Scholar 

  22. Malcolm J, Gruszka-Goh M, Donachie PH, Buchan JC. The Royal College of Ophthalmologists’ National Ophthalmology Database study of cataract surgery: report 19, a comparative study of the cost and carbon footprint of local anaesthesia techniques for cataract surgery. Eye. 2025;39:779–84. https://doi.org/10.1038/s41433-024-03494-3.

    Article  PubMed  Google Scholar 

  23. Neo YN, Gruszka-Goh MH, Braga AJ, de Klerk TA, Lindfield D, Nestel A, et al. Royal College of Ophthalmologists’ National Ophthalmology Database study of cataract surgery: report 11, techniques and complications of local anesthesia for cataract surgery in the United Kingdom. J Cataract Refract Surg. 2023;49:1216–22. https://doi.org/10.1097/j.jcrs.0000000000001289.

    Article  PubMed  Google Scholar 

  24. Donnenfeld ED, Hovanesian JA, Malik AG, Wong A. A randomized, prospective, observer-masked study comparing dropless treatment regimen using intracanalicular dexamethasone insert, intracameral ketorolac, and intracameral moxifloxacin versus conventional topical therapy to control postoperative pain and inflammation in cataract surgery. Clin Ophthalmol. 2023;17:2349–56. https://doi.org/10.2147/OPTH.S422502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Massa S, Smits DJ, Nguyen AT, Patil SA, Chen EM, Shorstein NH, et al. Cost analysis of dropless cataract surgery prophylaxis with intracameral antibiotics and subconjunctival steroids. J Cataract Refract Surg. 2024;50:1215–23. https://doi.org/10.1097/j.jcrs.0000000000001526.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huang AY, Rao N, Armenti ST. Dropless cataract surgery: a review of the literature. Int Ophthalmol Clin. 2025;65:44–54. https://doi.org/10.1097/IIO.0000000000000560.

    Article  PubMed  Google Scholar 

  27. Råen M, Sandvik GF, Drolsum L. Endophthalmitis following cataract surgery: the role of prophylactic postoperative chloramphenicol eye drops. Acta Ophthalmol. 2013;91:118–22. https://doi.org/10.1111/j.1755-3768.2011.02324.x.

    Article  PubMed  CAS  Google Scholar 

  28. Raizman MB. Determining the role for antibiotics in the prevention of endophthalmitis after cataract surgery. Arch Ophthalmol. 2011;129:501–2. https://doi.org/10.1001/archophthalmol.2011.50.

    Article  PubMed  Google Scholar 

  29. Behndig A, Montan P, Stenevi U, Kugelberg M, Lundström M. One million cataract surgeries: Swedish national cataract register 1992-2009. J Cataract Refract Surg. 2011;37:1539–45. https://doi.org/10.1016/j.jcrs.2011.05.021.

    Article  PubMed  Google Scholar 

  30. Endophthalmitis Study Group, European Society of Cataract & Refractive Surgeons. Prophylaxis of postoperative endophthalmitis following cataract surgery: results of the ESCRS multicenter study and identification of risk factors. J Cataract Refract Surg. 2007;33:978–88. https://doi.org/10.1016/j.jcrs.2007.02.032.

  31. Chang DF, Rhee DJ. Antibiotic prophylaxis of postoperative endophthalmitis after cataract surgery: results of the 2021 ASCRS member survey. J Cataract Refract Surg. 2022;48:3–7. https://doi.org/10.1097/j.jcrs.0000000000000757.

    Article  PubMed  Google Scholar 

  32. Felfeli T, Miranda RN, Kaur J, Chan CC, Naimark DMJ. Cost-effectiveness of preoperative topical antibiotic prophylaxis for endophthalmitis following cataract surgery. Am J Ophthalmol. 2023;247:152–60. https://doi.org/10.1016/j.ajo.2022.11.008.

    Article  PubMed  CAS  Google Scholar 

  33. Bhatt SS, Stepien KE, Joshi K. Prophylactic antibiotic use after intravitreal injection: effect on endophthalmitis rate. Retina. 2011;31:2032–6. https://doi.org/10.1097/IAE.0b013e31820f4b4f.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Storey P, Dollin M, Pitcher J, Reddy S, Vojtko J, Vander J, et al. Post-injection endophthalmitis study team. The role of topical antibiotic prophylaxis to prevent endophthalmitis after intravitreal injection. Ophthalmology. 2014;121:283–9. https://doi.org/10.1016/j.ophtha.2013.08.037.

    Article  PubMed  Google Scholar 

  35. Hunyor AP, Merani R, Darbar A, Korobelnik JF, Lanzetta P, Okada AA. Topical antibiotics and intravitreal injections. Acta Ophthalmol. 2018;96:435–41. https://doi.org/10.1111/aos.13417.

    Article  PubMed  Google Scholar 

  36. Govindasamy G, Lim C, Riau AK, Tong L. Limiting plastic waste in dry eye practice for environmental sustainability. Ocul Surf. 2022;25:87–8. https://doi.org/10.1016/j.jtos.2022.05.005.

    Article  PubMed  PubMed Central  Google Scholar 

  37. March de Ribot F, Benitez Del Castillo JM, Geerling G, Messmer EM, Baudouin C, Alves M. Dry eye disease sustainability. Ocul Surf. 2023;30:104–6. https://doi.org/10.1016/j.jtos.2023.08.006.

    Article  PubMed  Google Scholar 

  38. Thiel CL, Schehlein E, Ravilla T, Ravindran RD, Robin AL, Saeedi OJ, et al. Cataract surgery and environmental sustainability: waste and lifecycle assessment of phacoemulsification at a private healthcare facility. J Cataract Refract Surg. 2017;43:1391–8. https://doi.org/10.1016/j.jcrs.2017.08.017.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Preferred practice guidelines for reducing waste in cataract surgery. https://ranzco.edu/wp-content/uploads/2021/12/RANZCO-Guidelines-Preferred-Practice-Guidelines-for-Reducing-Waste-in-Cataract-Surgery.pdf.

  40. Schlager A. Accumulation of carbon dioxide under ophthalmic drapes during eye surgery: a comparison of three different drapes. Anaesthesia. 1999;54:690–4. https://doi.org/10.1046/j.1365-2044.1999.00889.x.

    Article  PubMed  CAS  Google Scholar 

  41. Schlager A, Luger TJ. Oxygen application by a nasal probe prevents hypoxia but not rebreathing of carbon dioxide in patients undergoing eye surgery under local anaesthesia. Br J Ophthalmol. 2000;84:399–402. https://doi.org/10.1136/bjo.84.4.399.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Winklmair N, Kieselbach G, Bopp J, Amon M, Findl O. Potential environmental effect of reducing the variation of disposable materials used for cataract surgery. J Cataract Refract Surg. 2023;49:628–34. https://doi.org/10.1097/j.jcrs.0000000000001170.

    Article  PubMed  Google Scholar 

  43. Chang DF, Thiel CL. Ophthalmic instrument cleaning and sterilization task force. Survey of cataract surgeons’ and nurses’ attitudes toward operating room waste. J Cataract Refract Surg. 2020;46:933–40. https://doi.org/10.1097/j.jcrs.0000000000000267.

    Article  PubMed  Google Scholar 

  44. Yap A, Wang K, Chen E, Melhado C, Ahmad T, O’Sullivan P, et al. A mixed-methods study on end-user perceptions of transitioning to reusable surgical gowns. Surg Open Sci. 2022;11:33–39. https://doi.org/10.1016/j.sopen.2022.10.003.

    Article  PubMed  PubMed Central  Google Scholar 

  45. LCA of reusable and single-use surgical gowns and drapes (Dutch) https://ce.nl/wpcontent/uploads/2022/05/CE_Delft_210440_LCA_herbruikbare_en_eenmalige_ok-jassen_en_afdekmateriaal_def.pdf.

  46. Birtel J, Heimann H, Hoerauf H, Helbig H, Schulz C, Holz FG, et al. Nachhaltigkeit in der augenheilkunde : adaptation an die klimakrise und mitigation [sustainability in ophthalmology : adaptation to the climate crisis and mitigation]. Ophthalmologie. 2022;119:567–76. https://doi.org/10.1007/s00347-022-01608-4.

    Article  PubMed  PubMed Central  Google Scholar 

  47. SIDICS: sustainability index for disposables in cataract surgery. https://www.escrs.org/sidics.

  48. Malcolm J, Dodd A, Shaikh M, Cassels-Brown A, Buchan JC. Reducing the carbon footprint of cataract surgery: co-creating solutions with a departmental Delphi process. Eye. 2024;38:1349–54. https://doi.org/10.1038/s41433-023-02902-4.

    Article  PubMed  Google Scholar 

  49. Chandra P, Welch S, Oliver GF, Gale J. The carbon footprint of intravitreal injections. Clin Exp Ophthalmol. 2022;50:347–9. https://doi.org/10.1111/ceo.14055.

    Article  PubMed  Google Scholar 

  50. Gale J, Welch SH, Niederer R. Intravitreal injections with a low consumption technique have a low infection rate. Eye. 2023. https://doi.org/10.1038/s41433-023-02753-z.

  51. Lau PE, Jenkins KS, Layton CJ. Current evidence for the prevention of endophthalmitis in anti-VEGF intravitreal injections. J Ophthalmol. 2018;2018:8567912. https://doi.org/10.1155/2018/8567912.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Birtel J, Hammer M, Feltgen N, Pauleikhoff L, Ong AY, Geerling G, et al. Intravitreal injections: improving sustainability by reducing clinical waste. Klin Monbl Augenheilkd. 2024;241:1156–62. https://doi.org/10.1055/a-2184-9492.

    Article  PubMed  Google Scholar 

  53. Joint statement: Interim recommendations to discharge patients following routine uncomplicated cataract surgery. Royal College of Ophthalmologists. https://www.rcophth.ac.uk/news-views/interim-recommendations-uncomplicated-cataract-surgery/.

  54. Whitefield L, Crowston J, Little BC. First day follow up for routine phacoemulsification? Br J Ophthalmol. 1996;80:148–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Tufail A, Foss AJE, Hamilton AMP. Is the first day postoperative review necessary after cataract extraction? Br J Ophthalmol. 1995;79:646–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Grzybowski A, Kanclerz P. Do we need day-1 postoperative follow-up after cataract surgery? Graefes Arch Clin Exp Ophthalmol. 2019;257:855–61.

    Article  PubMed  Google Scholar 

  57. Kessel L, Andresen J, Erngaard D, Flesner P, Tendal B, Hjortdal J. Safety of deferring review after uneventful cataract surgery until 2 weeks post-operatively. J Cataract Refract Surg. 2015;41:2755–64.

    Article  PubMed  Google Scholar 

  58. Patel D, Borkar DS, Madhava M, Obeid A, Mellen PL, Regillo CD, Garg SJ, Wills Eye Retinal Detachment Study Group. Incidence of management changes at the postoperative day one visit after pars plana vitrectomy for retinal detachment. Am J Ophthalmol. 2021;222:271–6. https://doi.org/10.1016/j.ajo.2020.09.034.

    Article  PubMed  Google Scholar 

  59. Ting DSJ, Buchan JC. Equity, access, and carbon cost-effectiveness of bilateral cataract surgery. Lancet. 2024;403:353–54. https://doi.org/10.1016/S0140-6736(23)01923-2.

  60. Spekreijse LS, Nuijts RMMA. An update on immediate sequential bilateral cataract surgery. Curr Opin Ophthalmol. 2023;34:21–6. https://doi.org/10.1097/ICU.0000000000000907.

    Article  PubMed  Google Scholar 

  61. Lundström M, Albrecht S, Roos P. Immediate versus delayed sequential bilateral cataract surgery: an analysis of costs and patient value. Acta Ophthalmol. 2009;87:33–8. https://doi.org/10.1111/j.1755-3768.2008.01343.

    Article  PubMed  Google Scholar 

  62. Malvankar-Mehta MS, Filek R, Iqbal M, Shakir A, Mao A, Si F, et al. Immediately sequential bilateral cataract surgery: a cost-effective procedure. Can J Ophthalmol. 2013;48:482–8. https://doi.org/10.1016/j.jcjo.2013.05.004.

    Article  PubMed  Google Scholar 

  63. Dickman MM, Spekreijse LS, Winkens B, Schouten JS, Simons RW, Dirksen CD, et al. Immediate sequential bilateral surgery versus delayed sequential bilateral surgery for cataracts. Cochrane Database Syst Rev. 2022;4:CD013270. https://doi.org/10.1002/14651858.CD013270.pub2.

    Article  PubMed  Google Scholar 

  64. NICE guidelines (NG77) cataracts in adults: management (NG77). https://guidelines.ebmportal.com/cataracts-adults-management-ng77.

  65. Power B, Brady R, Connell P. Analyzing the carbon footprint of an intravitreal Injection. J Ophthalmic Vis Res. 2021;16:367–76. https://doi.org/10.18502/jovr.v16i3.9433.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ruão M, Andreu-Fenoll M, Dolz-Marco R, Gallego-Pinazo R. Safety of bilateral same-day intravitreal injections of anti-vascular endothelial growth factor agents. Clin Ophthalmol. 2017;11:299–302. https://doi.org/10.2147/OPTH.S124282.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Jang K, Ahn J, Sohn J, Hwang DD. Evaluation of the safety of bilateral same-day intravitreal injections of anti-vascular endothelial growth factor agents: experience of a large Korean retina center. Clin Ophthalmol. 2020;14:3211–8. https://doi.org/10.2147/OPTH.S276620.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Port AD, Nolan JG, Siegel NH, Chen X, Ness SD, Subramanian ML. Combined phaco-vitrectomy provides lower costs and greater area under the curve vision gains than sequential vitrectomy and phacoemulsification. Graefes Arch Clin Exp Ophthalmol. 2021;259:45–52. https://doi.org/10.1007/s00417-020-04877-4.

    Article  PubMed  Google Scholar 

  69. Daud F, Daud K, Popovic MM, Yeung S, You Y, Cruz Pimentel M, et al. Combined versus sequential pars plana vitrectomy and phacoemulsification for macular hole and epiretinal membrane: a systematic review and meta-analysis. Ophthalmol Retin. 2023;7:721–31. https://doi.org/10.1016/j.oret.2023.03.017.

    Article  Google Scholar 

  70. Seider MI, Michael Lahey J, Fellenbaum PS. Cost of phacovitrectomy versus vitrectomy and sequential phacoemulsification. Retina. 2014;34:1112–5. https://doi.org/10.1097/IAE.0000000000000061.

    Article  PubMed  Google Scholar 

  71. Shi L, Chang JS, Suh LH, Chang S. DIFFERENCES IN REFRACTIVE OUTCOMES BETWEEN PHACOEMULSIFICATION FOR CATARACT ALONE AND COMBINED PHACOEMULSIFICATION AND VITRECTOMY FOR EPIRETINAL MEMBRANE. Retina. 2019;39:1410–5. https://doi.org/10.1097/IAE.0000000000002153.

    Article  PubMed  CAS  Google Scholar 

  72. Ahmadzadeh A, Kessel L, Subhi Y, Bach-Holm D. Comparative efficacy of phacotrabeculectomy versus trabeculectomy with or without later phacoemulsification: a systematic review with meta-analyses. J Ophthalmol. 2021;2021:6682534. https://doi.org/10.1155/2021/6682534.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lindfield D, Pasu S, Ursell P. Shield or not to shield? Postoperative protection after modern cataract surgery. Eye. 2011;25:1659–60. https://doi.org/10.1038/eye.2011.234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Moussa G, Ch’ng SW, Park DY, Ziaei H, Jalil A, Patton N, et al. Environmental effect of fluorinated gases in vitreoretinal surgery: a multicenter study of 4,877 patients. Am J Ophthalmol. 2022;235:271–9. https://doi.org/10.1016/j.ajo.2021.09.020.

    Article  PubMed  CAS  Google Scholar 

  75. Moussa G, Ch’ng SW, Ziaei H, Jalil A, Park DY, Patton N, et al. The use of fluorinated gases and quantification of carbon emission for common vitreoretinal procedures. Eye. 2023;37:1405–9. https://doi.org/10.1038/s41433-022-02145-9.

    Article  PubMed  CAS  Google Scholar 

  76. Moussa G, Andreatta W, Ch’ng SW, Ziaei H, Jalil A, Patton N, et al. Environmental effect of air versus gas tamponade in the management of rhegmatogenous retinal detachment VR surgery: a multicentre study of 3,239 patients. PLoS ONE. 2022;17:e0263009. https://doi.org/10.1371/journal.pone.0263009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Tavassoli S. Comment on: ‘The use of fluorinated gases and quantification of carbon emission for common vitreoretinal procedures’. Eye. 2023. https://doi.org/10.1038/s41433-023-02651-4.

  78. Teh BL, Toh S, Williamson TH, Obara B, Guillemaut JY, Steel DH. Reducing the use of fluorinated gases in vitreoretinal surgery. Eye. 2023. https://doi.org/10.1038/s41433-023-02639-0.

  79. Shettigar MP, Dave VP, Chou HD, Fung A, lguban E, March de Ribot F, et al. Vitreous substitutes and tamponades - a review of types, applications, and future directions. Indian J Ophthalmol. 2024;72:1102–11. https://doi.org/10.4103/IJO.IJO_2417_23.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lam L, Bradbrook D, Gale J. Tracing the barriers to decarbonising ophthalmology: a review. Clin Exp Ophthalmol. 2024;52:78–90.

    Article  PubMed  Google Scholar 

  81. Raman R, Rao C, Ruamviboonsuk P, Huang S, Sharma T. Single-use versus reuse of instruments in ophthalmic surgery. Eye. 2023;37:2839–40. https://doi.org/10.1038/s41433-023-02431-0.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Qin V, LaHood B, Guber I, Di Simplicio Cherubini S. Estimation of the economic and environmental impact of single-use instruments in routine cataract surgery. Clin Ophthalmol. 2024;18:2481–5. https://doi.org/10.2147/OPTH.S467872.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Akgun Z, Palamar M. Sustainability and minimization of carbon footprint in ophthalmology: what can we change in the outpatient clinic routine? Eye. 2025. https://doi.org/10.1038/s41433-025-03885-0.

  84. Foo K, March F, Elferink S, Gale J. The carbon footprint of glaucoma care with drops or laser first. Clin Exp Ophthalmol. 2025;53:435–7. https://doi.org/10.1111/ceo.14491.

    Article  PubMed  Google Scholar 

  85. Brown MRD, Knight M, Peters CJ, Maleki S, Motavalli A, Nedjat-Shokouhi B. Digital outpatient health solutions as a vehicle to improve healthcare sustainability-a United Kingdom focused policy and practice perspective. Front Digit Health. 2023;5:1242896. https://doi.org/10.3389/fdgth.2023.1242896.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Johns G, Whistance B, Burhouse A, Khalil S, Whistance M, Ahuja S, et al. Benefits, challenges and sustainability of digital healthcare for NHS Wales: a qualitative study. BMJ Open. 2023;13:e069371. https://doi.org/10.1136/bmjopen-2022-069371.

    Article  PubMed  Google Scholar 

  87. Fragão-Marques M, Ozben T. Digital transformation and sustainability in healthcare and clinical laboratories. Clin Chem Lab Med. 2022;61:627–33. https://doi.org/10.1515/cclm-2022-1092.

    Article  PubMed  CAS  Google Scholar 

  88. Purohit A, Smith J, Hibble A. Does telemedicine reduce the carbon footprint of healthcare? A systematic review. Future Health J. 2021;8:e85–91. https://doi.org/10.7861/fhj.2020-0080.

    Article  Google Scholar 

  89. Donald N, Irukulla S. Greenhouse gas emission savings in relation to telemedicine and associated patient benefits: a systematic review. Telemed J E Health. 2022. https://doi.org/10.1089/tmj.2022.0047.

  90. Eyesustain webpage https://eyesustain.org/.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Francesc March de Ribot and Anna March de Ribot contributed to the conception, design, and drafting of the manuscript. Sjoerd Elferink, Redmer van Leeuwen, David Chang, and Oliver Findl critically reviewed the manuscript and provided important intellectual input. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Francesc March de Ribot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

March de Ribot, F., March de Ribot, A., Elferink, S. et al. Sustainability practices made easy. Eye 39, 3058–3062 (2025). https://doi.org/10.1038/s41433-025-04046-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41433-025-04046-z

Search

Quick links