Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Taylor Dispersion Analysis to support lipid-nanoparticle formulations for mRNA vaccines

Abstract

Lipid nanoparticles (LNPs) are currently the most advanced non-viral clinically approved messenger ribonucleic acid (mRNA) delivery systems. The ability of a mRNA vaccine to have a therapeutic effect is related to the capacity of LNPs to deliver the nucleic acid intact into cells. The role of LNPs is to protect mRNA, especially from degradation by ribonucleases (RNases) and to allow it to access the cytoplasm of cells where it can be translated into the protein of interest. LNPs enter cells by endocytosis and their size is a critical parameter impacting their cellular internalization. In this work, we studied different formulation process parameters impacting LNPs size. Taylor dispersion analysis (TDA) was used to determine the LNPs size and size distribution and the results were compared with those obtained by Dynamic Light Scattering (DLS). TDA was also used to study both the degradation of mRNA in the presence of RNases and the percentage of mRNA encapsulation within LNPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of lipid nanoparticles (LNPs) formulation by rapid dilution of an ethanolic phase containing lipids in an aqueous phase containing mRNA.
Fig. 2: Taylorgrams obtained for the size characterization of LNPs.
Fig. 3: Size distributions obtained by TDA and DLS.
Fig. 4: Taylorgrams obtained in the absence or in the presence of RNase A.
Fig. 5: Taylorgrams obtained for the determination of percentage of mRNA encapsulation and free mRNA hydrodynamic diameters.

Similar content being viewed by others

Data availability

Additional data are available in the Supplementary Information file.

References

  1. Rappuoli R, Pizza M, Del Giudice G, De Gregorio E. Vaccines, new opportunities for a new society. Proc Natl Acad Sci. 2014;111:12288–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol. 2021;21:83–100.

    Article  CAS  PubMed  Google Scholar 

  3. Morens DM, Fauci AS. Emerging pandemic diseases: how we got to COVID-19. Cell. 2020;182:1077–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hajj KA, Whitehead KA. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat Rev Mater. 2017;2:17056.

    Article  CAS  Google Scholar 

  5. Nanomedicine and the COVID-19 vaccines. Nat Nanotechnol. 2020;15, 963–963.

  6. Gebre MS, Brito LA, Tostanoski LH, Edwards DK, Carfi A, Barouch DH. Novel approaches for vaccine development. Cell. 2021;184:1589–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247:1465–8.

    Article  CAS  PubMed  Google Scholar 

  8. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov. 2018;17:261–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guan S, Rosenecker J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther. 2017;24:133–43.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Goel V, Robbie GJ. Pharmacokinetics of patisiran, the first approved RNA interference therapy in patients with hereditary transthyretin-mediated amyloidosis. J Clin Pharmacol. 2020;60:573–85.

    Article  CAS  PubMed  Google Scholar 

  11. Urits I, Swanson D, Swett MC, Patel A, Berardino K, Amgalan A, et al. A review of patisiran (ONPATTRO®) for the treatment of polyneuropathy in people with hereditary transthyretin amyloidosis. Neurol Ther. 2020;9:301–15.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Akinc A, Maier MA, Manoharan M, Fitzgerald K, Jayaraman M, Barros S, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol. 2019;14:1084–7.

    Article  CAS  PubMed  Google Scholar 

  13. Kim YC, Dema B, Reyes-Sandoval A. COVID-19 vaccines: breaking record times to first-in-human trials. Npj Vaccines. 2020;5:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Friedrichs S, Bowman DM. COVID-19 may become nanomedicine’s finest hour yet. Nat Nanotechnol. 2021;16:362–4.

    Article  CAS  PubMed  Google Scholar 

  15. Schoenmaker L, Witzigmann D, Kulkarni JA, Verbeke R, Kersten G, Jiskoot W, et al. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int J Pharm. 2021;601:120586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Crommelin DJA, Anchordoquy TJ, Volkin DB, Jiskoot W, Mastrobattista E. Addressing the cold reality of mRNA vaccine stability. J Pharm Sci. 2021;110:997–1001.

    Article  CAS  PubMed  Google Scholar 

  17. Gilleron J, Querbes W, Zeigerer A, Borodovsky A, Marsico G, Schubert U, et al. Image-based analysis of lipid nanoparticle–mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. 2013;31:638–46.

    Article  CAS  PubMed  Google Scholar 

  18. Sabnis S, Kumarasinghe ES, Salerno T, Mihai C, Ketova T, Senn JJ, et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol Ther. 2018;26:1509–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chapin-Bardales J, Gee J, Myers T. Reactogenicity following receipt of mRNA-based COVID-19 vaccines. JAMA. 2021;325:2201–2.

    Article  CAS  PubMed  Google Scholar 

  20. Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat Nanotechnol. 2020;15:313–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dammes N, Goldsmith M, Ramishetti S, Dearling JLJ, Veiga N, Packard AB, et al. Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics. Nat Nanotechnol. 2021;16:1030–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wilhelm S, Tavares A, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1:16014.

    Article  CAS  Google Scholar 

  23. Jiang W, Kim BYS, Rutka JT, Chan WCW. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008;3:145–50.

    Article  CAS  PubMed  Google Scholar 

  24. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422:37–44.

    Article  CAS  PubMed  Google Scholar 

  25. Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;377:159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9:615–27.

    Article  CAS  PubMed  Google Scholar 

  27. Andar AU, Hood RR, Vreeland WN, DeVoe DL, Swaan PW. Microfluidic preparation of liposomes to determine particle size influence on cellular uptake mechanisms. Pharm Res. 2014;31:401–13.

    Article  CAS  PubMed  Google Scholar 

  28. Evers MJW, Kulkarni JA, Van der Meel R, Cullis PR, Vader P, Schiffelers RM. State-of-the-art design and rapid-mixing production techniques of lipid nanoparticles for nucleic acid delivery. Small Methods. 2018;2:1700375.

    Article  Google Scholar 

  29. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomed. 2016;11:673–92.

    Article  CAS  Google Scholar 

  30. Chauhan VP, Jain RK. Strategies for advancing cancer nanomedicine. Nat Mater. 2013;12:958–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Le-Vinh B, Steinbring C, Wibel R, Friedl JD, Bernkop-Schnürch A. Size shifting of solid lipid nanoparticle system triggered by alkaline phosphatase for site specific mucosal drug delivery. Eur J Pharm Biopharm. 2021;163:109–19.

    Article  CAS  PubMed  Google Scholar 

  32. Trevaskis NL, Kaminskas LM, Porter CJH. From sewer to saviour—targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov. 2015;14:781–803.

    Article  CAS  PubMed  Google Scholar 

  33. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20:101–24.

    Article  CAS  PubMed  Google Scholar 

  34. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Demelenne A, Servais AC, Crommen J, Fillet M. Analytical techniques currently used in the pharmaceutical industry for the quality control of RNA-based therapeutics and ongoing developments. J Chromatogr. A. 2021;1651:462283.

    Article  CAS  PubMed  Google Scholar 

  36. Fan Y, Marioli M, Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J Pharm Biomed Anal. 2021;192:113642.

    Article  CAS  PubMed  Google Scholar 

  37. Malburet C, Leclercq L, Cotte JF, Thiebaud J, Bazin E, Garinot M, et al. Size and charge characterization of lipid nanoparticles for mRNA vaccines. Anal Chem. 2022;94:4677–85.

    Article  CAS  PubMed  Google Scholar 

  38. Chamieh J, Leclercq L, Martin M, Slaoui S, Jensen H, Østergaard J, et al. Limits in size of taylor dispersion analysis: representation of the different hydrodynamic regimes and application to the size-characterization of cubosomes. Anal Chem. 2017;89:13487–93.

    Article  CAS  PubMed  Google Scholar 

  39. Cipelletti L, Biron JP, Martin M, Cottet H. Measuring arbitrary diffusion coefficient distributions of nano-objects by Taylor Dispersion Analysis. Anal Chem. 2015;87:8489–96.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S. Size-dependent endocytosis of nanoparticles. Adv Mater. 2009;21:419–24.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Belliveau NM, Huft J, Lin PJ, Chen S, Leung AK, Leaver TJ, et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol Ther—Nucleic Acids. 2012;1:e37.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yanez Arteta M, Kjellman T, Bartesaghi S, Wallin S, Wu X, Kvist AJ, et al. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc Natl Acad Sci. 2018;115:E3351.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bao Y, Jin Y, Chivukula P, Zhang J, Liu Y, Liu J, et al. Effect of PEGylation on biodistribution and gene silencing of siRNA/lipid nanoparticle complexes. Pharm Res. 2013;30:342–51.

    Article  CAS  PubMed  Google Scholar 

  44. Kozma GT, Shimizu T, Ishida T, Szebeni J. Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv Liposome Res. 2020;154–155:163–75.

    Google Scholar 

  45. Hoang Thi TT, Pilkington EH, Nguyen DH, Lee JS, Park KD, Truong NP. The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers. 2020;12:298.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nogueira SS, Schlegel A, Maxeiner K, Weber B, Barz M, Schroer MA, et al. Polysarcosine-functionalized lipid nanoparticles for therapeutic mRNA delivery. ACS Appl Nano Mater. 2020;3:10634–45.

    Article  CAS  Google Scholar 

  47. Joh DY, Zimmers Z, Avlani M, Heggestad JT, Aydin HB, Ganson N, et al. Architectural modification of conformal PEG-bottlebrush coatings minimizes Anti-PEG antigenicity while preserving stealth properties. Adv Healthc Mater. 2019;8:1801177.

    Article  Google Scholar 

  48. Ou H, Cheng T, Zhang Y, Liu J, Ding Y, Zhen J, et al. Surface-adaptive zwitterionic nanoparticles for prolonged blood circulation time and enhanced cellular uptake in tumor cells. Acta Biomater. 2018;65:339–48.

    Article  CAS  PubMed  Google Scholar 

  49. Pitek AS, Jameson SA, Veliz FA, Shukla S, Steinmetz NF. Serum albumin ‘camouflage’ of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Biomaterials. 2016;89:89–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gulati NM, Stewart PL, Steinmetz NF. Bioinspired shielding strategies for nanoparticle drug delivery applications. Mol Pharm. 2018;15:2900–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roces CB, Lou G, Jain N, Abraham S, Thomas A, Halbert GW et al. Manufacturing considerations for the development of lipid nanoparticles using microfluidics. Pharmaceutics. 2020;12:1095.

  52. Zhigaltsev IV, Belliveau N, Hafez I, Leung AK, Huft J, Hansen C, et al. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir. 2012;28:3633–40.

    Article  CAS  PubMed  Google Scholar 

  53. Chiesa E, Greco A, Riva F, Tosca EM, Dorati R, Pisani S, et al. Staggered herringbone microfluid device for the manufacturing of chitosan/TPP nanoparticles: systematic optimization and preliminary biological evaluation. Int. J. Mol. Sci. 2019;20:6212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cottet H, Biron JP, Martin M. Taylor dispersion analysis of mixtures. Anal. Chem. 2007;79:9066–73.

    Article  CAS  PubMed  Google Scholar 

  55. U.S. FDA. Drug products, including biological products, that contain nanomaterials—guidance for Industry. 2017.

  56. Let’s talk about lipid nanoparticles. Nat Rev Mater. 2021;6, 99–99.

  57. Reichmuth AM, Oberli MA, Jaklenec A, Langer R, Blankschtein D. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv. 2016;7:319–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was partly funded by Sanofi Pasteur under a Cooperative Research and Development Agreement with the University of Montpellier and the CNRS.

Author information

Authors and Affiliations

Authors

Contributions

CM, LL, J-FC, JT, and HC designed this study. CM and EB formulated the LNPs. CM performed the TDA and DLS experiments. LL, J-FC, JT, EB, MG, and HC reviewed the data. CM wrote the manuscript. LL, J-FC, JT, EB, MG, and HC reviewed and edited the manuscript.

Corresponding author

Correspondence to Hervé Cottet.

Ethics declarations

Competing interests

Camille Malburet, Jean-François Cotte, Jérôme Thiebaud, Emilie Bazin and Marie Garinot are Sanofi employees and may hold shares or stocks in the company.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malburet, C., Leclercq, L., Cotte, JF. et al. Taylor Dispersion Analysis to support lipid-nanoparticle formulations for mRNA vaccines. Gene Ther 30, 421–428 (2023). https://doi.org/10.1038/s41434-022-00370-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41434-022-00370-1

This article is cited by

Search

Quick links