Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Piezo ion channels: long-sought-after mechanosensors mediating hypertension and hypertensive nephropathy

Abstract

Recent advances in mechanobiology and the discovery of mechanosensitive ion channels have opened a new era of research on hypertension and related diseases. Piezo1 and Piezo2, first reported in 2010, are regarded as bona fide mechanochannels that mediate various biological and pathophysiological phenomena in multiple tissues and organs. For example, Piezo channels have pivotal roles in blood pressure control, triggering shear stress-induced nitric oxide synthesis and vasodilation, regulating baroreflex in the carotid sinus and aorta, and releasing renin from renal juxtaglomerular cells. Herein, we provide an overview of recent literature on the roles of Piezo channels in the pathogenesis of hypertension and related kidney damage, including our experimental data on the involvement of Piezo1 in podocyte injury and that of Piezo2 in renin expression and renal fibrosis in animal models of hypertensive nephropathy.

The mechanosensitive ion channels Piezo1 and Piezo2 play various roles in the pathogenesis of systemic hypertension by acting on vascular endothelial cells, baroreceptors in the carotid artery and aorta, and the juxtaglomerular apparatus. Piezo channels also contribute to hypertensive nephropathy by acting on mesangial cells, podocytes, and perivascular mesenchymal cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thompson DAW. On growth and form. Cambridge, UK: University Press; 1917.

    Book  Google Scholar 

  2. Nagase T, Nagase M, Machida M, Yamagishi M. Hedgehog signaling: a biophysical or biomechanical modulator in embryonic development? Ann N Y Acad Sci. 2007;1101:412–38.

    Article  CAS  PubMed  Google Scholar 

  3. Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev. 2023;103:1247–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ranade SS, Syeda R, Patapoutian A. Mechanically activated ion channels. Neuron. 2015;87:1162–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kefauver JM, Ward AB, Patapoutian A. Discoveries in structure and physiology of mechanically activated ion channels. Nature. 2020;587:567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Murad F. Discovery of some of the biological effects of nitric oxide and its role in cell signaling (Nobel Lecture). Angew Chem Int Ed Engl. 1999;38:1856–68.

    Article  CAS  PubMed  Google Scholar 

  7. Furchgott RF. Endothelium-derived relaxing factor: discovery, early studies, and identification as nitric oxide (Nobel Lecture). Angew Chem Int Ed Engl. 1999;38:1870–80.

    Article  CAS  PubMed  Google Scholar 

  8. Ignarro LJ. Nitric oxide: a unique endogenous signaling molecule in vascular biology (Nobel Lecture). Angew Chem Int Ed Engl. 1999;38:1882–92.

    Article  CAS  PubMed  Google Scholar 

  9. Heymans C, Neil E. Reflexogenic areas of the cardiovascular system. London, UK: Churchill, Ltd; 1958.

    Google Scholar 

  10. Tobian L, Tomboulian A, Janecek J. The effect of high perfusion pressures on the granulation of juxtaglomerular cells in an isolated kidney. J Clin Invest. 1959;38:605–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Skinner SL, McCubbin JW, Page IH. Renal baroreceptor control of renin secretion. Science. 1963;141:814–6.

    Article  CAS  PubMed  Google Scholar 

  12. Quillon A, Fromy B, Debret R. Endothelium microenvironment sensing leading to nitric oxide mediated vasodilation: a review of nervous and biomechanical signals. Nitric Oxide. 2015;45:20–6.

    Article  CAS  PubMed  Google Scholar 

  13. Lu Y, Ma X, Sabharwal R, Snitsarev V, Morgan D, Rahmouni K, et al. The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron. 2009;64:885–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McCleskey EW. A molecular sensor for the baroreceptor reflex? Neuron. 2009;64:776–7.

    Article  CAS  PubMed  Google Scholar 

  15. Seghers F, Yerna X, Zanou N, Devuyst O, Vennekens R, Nilius B, et al. TRPV4 participates in pressure-induced inhibition of renin secretion by juxtaglomerular cells. J Physiol. 2016;594:7327–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dworkin LD, Hostetter TH, Rennke HG, Brenner BM. Hemodynamic basis for glomerular injury in rats with desoxycorticosterone-salt hypertension. J Clin Invest. 1984;73:1448–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anderson S, Meyer TW, Rennke HG, Brenner BM. Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J Clin Invest. 1985;76:612–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kimura G, Brenner BM. The renal basis for salt sensitivity in hypertension. In: Laragh JH, Brenner BM, editors. Hypertension, pathophysiology, diagnosis, and management. Vol. 1. 2nd ed. New York, NY, USA: Raven Press; 1995. pp. 1569–88.

  19. Nagase M, Shibata S, Yoshida S, Nagase T, Gotoda T, Fujita T. Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension. 2006;47:1084–93.

    Article  CAS  PubMed  Google Scholar 

  20. Nagase M, Matsui H, Shibata S, Gotoda T, Fujita T. Salt-induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor: role of oxidative stress. Hypertension. 2007;50:877–83.

    Article  CAS  PubMed  Google Scholar 

  21. Nagase M, Fujita T. Mineralocorticoid receptor activation in obesity hypertension. Hypertens Res. 2009;32:649–57.

    Article  CAS  PubMed  Google Scholar 

  22. Shibata S, Mu S, Kawarazaki H, Muraoka K, Ishizawa K, Yoshida S, et al. Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralocorticoid receptor-dependent pathway. J Clin Invest. 2011;121:3233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yuan X, Zhao X, Wang W, Li C. Mechanosensing by Piezo1 and its implications in the kidney. Acta Physiol. 2024;240:e14152. https://doi.org/10.1111/apha.14152.

    Article  CAS  Google Scholar 

  24. Martinac B, Buechner M, Delcour AH, Adler J, Kung C. Pressure-sensitive ion channel in Escherichia coli. Proc Natl Acad Sci USA. 1987;84:2297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature. 1994;368:265–8.

    Article  CAS  PubMed  Google Scholar 

  26. Du Y, Xu B, Li Q, Peng C, Yang K. The role of mechanically sensitive ion channel Piezo1 in bone remodeling. Front Bioeng Biotechnol. 2024;12:1342149. https://doi.org/10.3389/fbioe.2024.1342149.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330:55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fang XZ, Zhou T, Xu JQ, Wang YX, Sun MM, He YJ, et al. Structure, kinetic properties and biological function of mechanosensitive Piezo channels. Cell Biosci. 2021;11:13. https://doi.org/10.1186/s13578-020-00522-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lai A, Cox CD, Chandra Sekar N, Thurgood P, Jaworowski A, Peter K, et al. Mechanosensing by Piezo1 and its implications for physiology and various pathologies. Biol Rev Camb Philos Soc. 2022;97:604–14.

    Article  CAS  PubMed  Google Scholar 

  30. Szczot M, Nickolls AR, Lam RM, Chesler AT. The form and function of PIEZO2. Annu Rev Biochem. 2021;90:507–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Earley S, Santana LF, Lederer WJ. The physiological sensor channels TRP and piezo: Nobel Prize in Physiology or Medicine 2021. Physiol Rev. 2022;102:1153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ogino S, Yoshikawa K, Nagase T, Mikami K, Nagase M. Roles of the mechanosensitive ion channel Piezo1 in the renal podocyte injury of experimental hypertensive nephropathy. Hypertens Res. 2024;47:747–59.

    Article  CAS  PubMed  Google Scholar 

  33. Mochida Y, Ochiai K, Nagase T, Nonomura K, Akimoto Y, Fukuhara H, et al. Piezo2 expression and its alteration by mechanical forces in mouse mesangial cells and renin-producing cells. Sci Rep. 2022;12:4197. https://doi.org/10.1038/s41598-022-07987-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ochiai K, Mochida Y, Nagase T, Fukuhara H, Yamaguchi Y, Nagase M. Upregulation of Piezo2 in the mesangial, renin, and perivascular mesenchymal cells of the kidney of Dahl salt-sensitive hypertensive rats and its reversal by esaxerenone. Hypertens Res. 2023;46:1234–46.

    Article  CAS  PubMed  Google Scholar 

  35. Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P, et al. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature. 2015;527:64–9.

    Article  CAS  PubMed  Google Scholar 

  36. Guo YR, MacKinnon R. Structure-based membrane dome mechanism for Piezo mechanosensitivity. Elife. 2017;6:e33660. https://doi.org/10.7554/eLife.33660.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Saotome K, Murthy SE, Kefauver JM, Whitwam T, Patapoutian A, Ward AB. Structure of the mechanically activated ion channel Piezo1. Nature. 2018;554:481–6.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao Q, Zhou H, Chi S, Wang Y, Wang J, Geng J, et al. Structure and mechanogating mechanism of the Piezo1 channel. Nature. 2018;554:487–92.

    Article  CAS  PubMed  Google Scholar 

  39. Yang X, Lin C, Chen X, Li S, Li X, Xiao B. Structure deformation and curvature sensing of PIEZO1 in lipid membranes. Nature. 2022;604:377–83.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Q, Zhou H, Li X, Xiao B. The mechanosensitive Piezo1 channel: a three-bladed propeller-like structure and a lever-like mechanogating mechanism. FEBS J. 2019;286:2461–70.

    Article  CAS  PubMed  Google Scholar 

  41. Jiang Y, Yang X, Jiang J, Xiao B. Structural designs and mechanogating mechanisms of the mechanosensitive Piezo channels. Trends Biochem Sci. 2021;46:472–88.

    Article  CAS  PubMed  Google Scholar 

  42. Xu X, Liu S, Liu H, Ru K, Jia Y, Wu Z, et al. Piezo channels: awesome mechanosensitive structures in cellular mechanotransduction and their role in bone. Int J Mol Sci. 2021;22:6429. https://doi.org/10.3390/ijms22126429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, Chi S, Guo H, Li G, Wang L, Zhao Q, et al. A lever-like transduction pathway for long-distance chemical- and mechano-gating of the mechanosensitive Piezo1 channel. Nat Commun. 2018;9:1300. https://doi.org/10.1038/s41467-018-03570-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin YC, Guo YR, Miyagi A, Levring J, MacKinnon R, Scheuring S. Force-induced conformational changes in PIEZO1. Nature. 2019;573:230–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mulhall EM, Gharpure A, Lee RM, Dubin AE, Aaron JS, Marshall KL, et al. Direct observation of the conformational states of PIEZO1. Nature. 2023;620:1117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang L, Zhou H, Zhang M, Liu W, Deng T, Zhao Q, et al. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature. 2019;573:225–9.

    Article  CAS  PubMed  Google Scholar 

  47. Taberner FJ, Prato V, Schaefer I, Schrenk-Siemens K, Heppenstall PA, Lechner SG. Structure-guided examination of the mechanogating mechanism of PIEZO2. Proc Natl Acad Sci USA. 2019;116:14260–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qin L, He T, Chen S, Yang D, Yi W, Cao H, et al. Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues. Bone Res. 2021;9:44. https://doi.org/10.1038/s41413-021-00168-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Coste B, Delmas P. PIEZO ion channels in cardiovascular functions and diseases. Circ Res. 2024;134:572–91.

    Article  CAS  PubMed  Google Scholar 

  50. Zhou Z, Martinac B. Mechanisms of PIEZO channel inactivation. Int J Mol Sci. 2023;24:14113. https://doi.org/10.3390/ijms241814113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature. 2012;483:176–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang J, Zhang K, Du R, Liu W, Zhang H, Tian T, et al. The Janus-faced role of Piezo1 in cardiovascular health under mechanical stimulation. Genes Dis. 2023;10:1956–68.

    Article  CAS  PubMed  Google Scholar 

  53. Vasileva V, Chubinskiy-Nadezhdin V. Regulation of PIEZO1 channels by lipids and the structural components of extracellular matrix/cell cytoskeleton. J Cell Physiol. 2023;238:918–30.

    Article  CAS  PubMed  Google Scholar 

  54. Romero LO, Massey AE, Mata-Daboin AD, Sierra-Valdez FJ, Chauhan SC, Cordero-Morales JF, et al. Dietary fatty acids fine-tune Piezo1 mechanical response. Nat Commun. 2019;10:1200. https://doi.org/10.1038/s41467-019-09055-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ma S, Dubin AE, Romero LO, Loud M, Salazar A, Chu S, et al. Excessive mechanotransduction in sensory neurons causes joint contractures. Science. 2023;379:201–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shi J, Hyman AJ, De Vecchis D, Chong J, Lichtenstein L, Futers TS, et al. Sphingomyelinase disables inactivation in endogenous PIEZO1 channels. Cell Rep. 2020;33:108225. https://doi.org/10.1016/j.celrep.2020.108225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Buyan A, Cox CD, Barnoud J, Li J, Chan HSM, Martinac B, et al. Piezo1 forms specific, functionally important interactions with phosphoinositides and cholesterol. Biophys J. 2020;119:1683–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin Y, Buyan A, Corry B. Characterizing the lipid fingerprint of the mechanosensitive channel Piezo2. J Gen Physiol. 2022;154:e202113064. https://doi.org/10.1085/jgp.202113064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Peyronnet R, Martins JR, Duprat F, Demolombe S, Arhatte M, Jodar M, et al. Piezo1-dependent stretch-activated channels are inhibited by Polycystin-2 in renal tubular epithelial cells. EMBO Rep. 2013;14:1143–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang T, Chi S, Jiang F, Zhao Q, Xiao B. A protein interaction mechanism for suppressing the mechanosensitive Piezo channels. Nat Commun. 2017;8:1797. https://doi.org/10.1038/s41467-017-01712-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wetzel C, Pifferi S, Picci C, Gök C, Hoffmann D, Bali KK, et al. Small-molecule inhibition of STOML3 oligomerization reverses pathological mechanical hypersensitivity. Nat Neurosci. 2017;20:209–18.

    Article  CAS  PubMed  Google Scholar 

  62. Wang H, Yuan Z, Wang B, Li B, Lv H, He J, et al. COMP (Cartilage Oligomeric Matrix Protein), a novel PIEZO1 regulator that controls blood pressure. Hypertension. 2022;79:549–61.

    Article  PubMed  Google Scholar 

  63. Zhou Z, Ma X, Lin Y, Cheng D, Bavi N, Secker GA, et al. MyoD-family inhibitor proteins act as auxiliary subunits of Piezo channels. Science. 2023;381:799–804.

    Article  CAS  PubMed  Google Scholar 

  64. Bae C, Sachs F, Gottlieb PA. The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. Biochemistry. 2011;50:6295–300.

    Article  CAS  PubMed  Google Scholar 

  65. Suchyna TM, Tape SE, Koeppe RE 2nd, Andersen OS, Sachs F, Gottlieb PA. Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature. 2004;430:235–40.

    Article  CAS  PubMed  Google Scholar 

  66. Suchyna TM. Piezo channels and GsMTx4: two milestones in our understanding of excitatory mechanosensitive channels and their role in pathology. Prog Biophys Mol Biol. 2017;130:244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Alcaino C, Knutson K, Gottlieb PA, Farrugia G, Beyder A. Mechanosensitive ion channel Piezo2 is inhibited by D-GsMTx4. Channels. 2017;11:245–53.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bowman CL, Gottlieb PA, Suchyna TM, Murphy YK, Sachs F. Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: history, properties, mechanisms and pharmacology. Toxicon. 2007;49:249–70.

    Article  CAS  PubMed  Google Scholar 

  69. Syeda R, Xu J, Dubin AE, Coste B, Mathur J, Huynh T, et al. Chemical activation of the mechanotransduction channel Piezo1. Elife. 2015;4:e07369. https://doi.org/10.7554/eLife.07369.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Evans EL, Cuthbertson K, Endesh N, Rode B, Blythe NM, Hyman AJ, et al. Yoda1 analogue (Dooku1) which antagonizes Yoda1-evoked activation of Piezo1 and aortic relaxation. Br J Pharm. 2018;175:1744–59.

    Article  CAS  Google Scholar 

  71. Parsonage G, Cuthbertson K, Endesh N, Murciano N, Hyman AJ, Revill CH, et al. Improved PIEZO1 agonism through 4-benzoic acid modification of Yoda1. Br J Pharm. 2023;180:2039–63.

    Article  CAS  Google Scholar 

  72. Jiang W, Wijerathne TD, Zhang H, Lin YC, Jo S, Im W, et al. Structural and thermodynamic framework for PIEZO1 modulation by small molecules. Proc Natl Acad Sci USA. 2023;120:e2310933120. https://doi.org/10.1073/pnas.2310933120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Del Rosario JS, Gabrielle M, Yudin Y, Rohacs T. TMEM120A/TACAN inhibits mechanically activated PIEZO2 channels. J Gen Physiol. 2022;154:e202213164. https://doi.org/10.1085/jgp.202213164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gabrielle M, Yudin Y, Wang Y, Su X, Rohacs T. Phosphatidic acid is an endogenous negative regulator of PIEZO2 channels and mechanical sensitivity. bioRxiv. 2024. https://doi.org/10.1101/2024.03.01.582964.

  75. Shinge SAU, Zhang D, Achu Muluh T, Nie Y, Yu F. Mechanosensitive Piezo1 channel evoked-mechanical signals in atherosclerosis. J Inflamm Res. 2021;14:3621–36.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ranade SS, Qiu Z, Woo SH, Hur SS, Murthy SE, Cahalan SM, et al. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci USA. 2014;111:10347–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li J, Hou B, Tumova S, Muraki K, Bruns A, Ludlow MJ, et al. Piezo1 integration of vascular architecture with physiological force. Nature. 2014;515:279–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang S, Chennupati R, Kaur H, Iring A, Wettschureck N, Offermanns S. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J Clin Invest. 2016;126:4527–36.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Iring A, Jin YJ, Albarrán-Juárez J, Siragusa M, Wang S, Dancs PT, et al. Shear stress-induced endothelial adrenomedullin signaling regulates vascular tone and blood pressure. J Clin Invest. 2019;129:2775–91.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rode B, Shi J, Endesh N, Drinkhill MJ, Webster PJ, Lotteau SJ, et al. Piezo1 channels sense whole body physical activity to reset cardiovascular homeostasis and enhance performance. Nat Commun. 2017;8:350. https://doi.org/10.1038/s41467-017-00429-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Retailleau K, Duprat F, Arhatte M, Ranade SS, Peyronnet R, Martins JR, et al. Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling. Cell Rep. 2015;13:1161–71.

    Article  CAS  PubMed  Google Scholar 

  82. Zarychanski R, Schulz VP, Houston BL, Maksimova Y, Houston DS, Smith B, et al. Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood. 2012;120:1908–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jankovsky N, Caulier A, Demagny J, Guitton C, Djordjevic S, Lebon D, et al. Recent advances in the pathophysiology of PIEZO1-related hereditary xerocytosis. Am J Hematol. 2021;96:1017–26.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang Y, Su SA, Li W, Ma Y, Shen J, Wang Y, et al. Piezo1-mediated mechanotransduction promotes cardiac hypertrophy by impairing calcium homeostasis to activate calpain/calcineurin signaling. Hypertension. 2021;78:647–60.

    Article  CAS  PubMed  Google Scholar 

  85. Lim GB. Piezo1 senses pressure overload and initiates cardiac hypertrophy. Nat Rev Cardiol. 2022;19:503. https://doi.org/10.1038/s41569-022-00746-1.

    Article  CAS  PubMed  Google Scholar 

  86. Nonomura K, Lukacs V, Sweet DT, Goddard LM, Kanie A, Whitwam T, et al. Mechanically activated ion channel PIEZO1 is required for lymphatic valve formation. Proc Natl Acad Sci USA. 2018;115:12817–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Solis AG, Bielecki P, Steach HR, Sharma L, Harman CCD, Yun S, et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature. 2019;573:69–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Atcha H, Jairaman A, Holt JR, Meli VS, Nagalla RR, Veerasubramanian PK, et al. Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing. Nat Commun. 2021;12:3256. https://doi.org/10.1038/s41467-021-23482-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Xia K, Chen X, Wang W, Liu Q, Zhao M, Ma J, et al. Roles of mechanosensitive ion channels in immune cells. Heliyon. 2024;10:e23318. https://doi.org/10.1016/j.heliyon.2023.e23318.

    Article  CAS  PubMed  Google Scholar 

  90. Ma S, Dubin AE, Zhang Y, Mousavi SAR, Wang Y, Coombs AM, et al. A role of PIEZO1 in iron metabolism in mice and humans. Cell. 2021;184:969–82.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Swain SM, Liddle RA. Mechanosensing Piezo channels in gastrointestinal disorders. J Clin Invest. 2023;133:e171955. https://doi.org/10.1172/jci171955.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Martins JR, Penton D, Peyronnet R, Arhatte M, Moro C, Picard N, et al. Piezo1-dependent regulation of urinary osmolarity. Pflug Arch. 2016;468:1197–206.

    Article  CAS  Google Scholar 

  93. Fu Y, Wan P, Zhang J, Li X, Xing J, Zou Y, et al. Targeting mechanosensitive Piezo1 alleviated renal fibrosis through p38MAPK-YAP pathway. Front Cell Dev Biol. 2021;9:741060. https://doi.org/10.3389/fcell.2021.741060.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zhao X, Kong Y, Liang B, Xu J, Lin Y, Zhou N, et al. Mechanosensitive Piezo1 channels mediate renal fibrosis. JCI Insight. 2022;7:e152330. https://doi.org/10.1172/jci.insight.152330.

    Article  PubMed  PubMed Central  Google Scholar 

  95. He Y, Deng B, Liu S, Luo S, Ning Y, Pan X, et al. Myeloid Piezo1 deletion protects renal fibrosis by restraining macrophage infiltration and activation. Hypertension. 2022;79:918–31.

    Article  CAS  PubMed  Google Scholar 

  96. Drobnik M, Smólski J, Grądalski Ł, Niemirka S, Młynarska E, Rysz J, et al. Mechanosensitive cation channel Piezo1 is involved in renal fibrosis induction. Int J Mol Sci. 2024;25:1718. https://doi.org/10.3390/ijms25031718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zheng Q, Liu H, Yu W, Dong Y, Zhou L, Deng W, et al. Mechanical properties of the brain: focus on the essential role of Piezo1-mediated mechanotransduction in the CNS. Brain Behav. 2023;13:e3136. https://doi.org/10.1002/brb3.3136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Qiu X, Deng Z, Wang M, Feng Y, Bi L, Li L. Piezo protein determines stem cell fate by transmitting mechanical signals. Hum Cell. 2023;36:540–53.

    Article  CAS  PubMed  Google Scholar 

  99. Otero-Sobrino Á, Blanco-Carlón P, Navarro-Aguadero M, Gallardo M, Martínez-López J, Velasco-Estévez M. Mechanosensitive ion channels: their physiological importance and potential key role in cancer. Int J Mol Sci. 2023;24:13710. https://doi.org/10.3390/ijms241813710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ranade SS, Woo SH, Dubin AE, Moshourab RA, Wetzel C, Petrus M, et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature. 2014;516:121–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Maksimovic S, Nakatani M, Baba Y, Nelson AM, Marshall KL, Wellnitz SA, et al. Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature. 2014;509:617–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Woo SH, Ranade S, Weyer AD, Dubin AE, Baba Y, Qiu Z, et al. Piezo2 is required for Merkel-cell mechanotransduction. Nature. 2014;509:622–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Woo SH, Lukacs V, de Nooij JC, Zaytseva D, Criddle CR, Francisco A, et al. Piezo2 is the principal mechanotransduction channel for proprioception. Nat Neurosci. 2015;18:1756–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang F, Knutson K, Alcaino C, Linden DR, Gibbons SJ, Kashyap P, et al. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J Physiol. 2017;595:79–91.

    Article  CAS  PubMed  Google Scholar 

  105. Marshall KL, Saade D, Ghitani N, Coombs AM, Szczot M, Keller J, et al. PIEZO2 in sensory neurons and urothelial cells coordinates urination. Nature. 2020;588:290–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. García-Mesa Y, Cárcaba L, Coronado C, Cobo R, Martín-Cruces J, García-Piqueras J, et al. Glans clitoris innervation: PIEZO2 and sexual mechanosensitivity. J Anat. 2021;238:446–54.

    Article  PubMed  Google Scholar 

  107. García-Mesa Y, García-Piqueras J, Cobo R, Martín-Cruces J, Suazo I, García-Suárez O, et al. Sensory innervation of the human male prepuce: Meissner’s corpuscles predominate. J Anat. 2021;239:892–902.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Feng J, Luo J, Yang P, Du J, Kim BS, Hu H. Piezo2 channel-Merkel cell signaling modulates the conversion of touch to itch. Science. 2018;360:530–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Szczot M, Liljencrantz J, Ghitani N, Barik A, Lam R, Thompson JH, et al. PIEZO2 mediates injury-induced tactile pain in mice and humans. Sci Transl Med. 2018;10:eaat9892. https://doi.org/10.1126/scitranslmed.aat9892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Murthy SE, Loud MC, Daou I, Marshall KL, Schwaller F, Kühnemund J, et al. The mechanosensitive ion channel Piezo2 mediates sensitivity to mechanical pain in mice. Sci Transl Med. 2018;10:eaat9897. https://doi.org/10.1126/scitranslmed.aat9897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zeng WZ, Marshall KL, Min S, Daou I, Chapleau MW, Abboud FM, et al. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science. 2018;362:464–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nonomura K, Woo SH, Chang RB, Gillich A, Qiu Z, Francisco AG, et al. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature. 2017;541:176–81.

    Article  CAS  PubMed  Google Scholar 

  113. Madar J, Tiwari N, Smith C, Sharma D, Shen S, Elmahdi A, et al. Piezo2 regulates colonic mechanical sensitivity in a sex specific manner in mice. Nat Commun. 2023;14:2158. https://doi.org/10.1038/s41467-023-37683-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lam RM, von Buchholtz LJ, Falgairolle M, Osborne J, Frangos E, Servin-Vences MR, et al. PIEZO2 and perineal mechanosensation are essential for sexual function. Science. 2023;381:906–10.

    Article  CAS  PubMed  Google Scholar 

  115. Delmas P, Parpaite T, Coste B. PIEZO channels and newcomers in the mammalian mechanosensitive ion channel family. Neuron. 2022;110:2713–27.

    Article  CAS  PubMed  Google Scholar 

  116. Lukacs V, Mathur J, Mao R, Bayrak-Toydemir P, Procter M, Cahalan SM, et al. Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia. Nat Commun. 2015;6:8329. https://doi.org/10.1038/ncomms9329.

    Article  CAS  PubMed  Google Scholar 

  117. Amado NG, Nosyreva ED, Thompson D, Egeland TJ, Ogujiofor OW, Yang M, et al. PIEZO1 loss-of-function compound heterozygous mutations in the rare congenital human disorder Prune Belly Syndrome. Nat Commun. 2024;15:339. https://doi.org/10.1038/s41467-023-44594-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Coste B, Houge G, Murray MF, Stitziel N, Bandell M, Giovanni MA, et al. Gain-of-function mutations in the mechanically activated ion channel PIEZO2 cause a subtype of Distal Arthrogryposis. Proc Natl Acad Sci USA. 2013;110:4667–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. McMillin MJ, Beck AE, Chong JX, Shively KM, Buckingham KJ, Gildersleeve HI, et al. Mutations in PIEZO2 cause Gordon syndrome, Marden-Walker syndrome, and distal arthrogryposis type 5. Am J Hum Genet. 2014;94:734–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chesler AT, Szczot M, Bharucha-Goebel D, Čeko M, Donkervoort S, Laubacher C, et al. The Role of PIEZO2 in Human Mechanosensation. N Engl J Med. 2016;375:1355–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lim XR, Harraz OF. Mechanosensing by vascular endothelium. Annu Rev Physiol. 2024;86:71–97.

    Article  CAS  PubMed  Google Scholar 

  122. Beech DJ, Kalli AC. Force sensing by Piezo channels in cardiovascular health and disease. Arterioscler Thromb Vasc Biol. 2019;39:2228–39. https://doi.org/10.1161/atvbaha.119.313348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Douguet D, Patel A, Xu A, Vanhoutte PM, Honoré E. Piezo ion channels in cardiovascular mechanobiology. Trends Pharm Sci. 2019;40:956–70.

    Article  CAS  PubMed  Google Scholar 

  124. Albarrán-Juárez J, Iring A, Wang S, Joseph S, Grimm M, Strilic B, et al. Piezo1 and G(q)/G(11) promote endothelial inflammation depending on flow pattern and integrin activation. J Exp Med. 2018;215:2655–72.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Yang H, Tenorio Lopes L, Barioni NO, Roeske J, Incognito AV, Baker J, et al. The molecular makeup of peripheral and central baroreceptors: stretching a role for Transient Receptor Potential (TRP), Epithelial Sodium Channel (ENaC), Acid Sensing Ion Channel (ASIC), and Piezo channels. Cardiovasc Res. 2022;118:3052–70.

    Article  CAS  PubMed  Google Scholar 

  126. Cui CP, Xiong X, Zhao JX, Fu DH, Zhang Y, Ma PB, et al. Piezo1 channel activation facilitates baroreflex afferent neurotransmission with subsequent blood pressure reduction in control and hypertension rats. Acta Pharm Sin. 2024;45:76–86.

    Article  CAS  Google Scholar 

  127. Drummond HA, Price MP, Welsh MJ, Abboud FM. A molecular component of the arterial baroreceptor mechanotransducer. Neuron. 1998;21:1435–41.

    Article  CAS  PubMed  Google Scholar 

  128. Lau OC, Shen B, Wong CO, Tjong YW, Lo CY, Wang HC, et al. TRPC5 channels participate in pressure-sensing in aortic baroreceptors. Nat Commun. 2016;7:11947. https://doi.org/10.1038/ncomms11947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lau OC, Shen B, Wong CO, Tjong YW, Lo CY, Wang HC, et al. Author Correction: TRPC5 channels participate in pressure-sensing in aortic baroreceptors. Nat Commun. 2018;9:16184. https://doi.org/10.1038/ncomms16184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Min S, Chang RB, Prescott SL, Beeler B, Joshi NR, Strochlic DE, et al. Arterial baroreceptors sense blood pressure through decorated aortic claws. Cell Rep. 2019;29:2192–201.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Huo L, Gao Y, Zhang D, Wang S, Han Y, Men H, et al. Piezo2 channel in nodose ganglia neurons is essential in controlling hypertension in a pathway regulated directly by Nedd4-2. Pharm Res. 2021;164:105391. https://doi.org/10.1016/j.phrs.2020.105391.

    Article  CAS  Google Scholar 

  132. Stocker SD, Sved AF, Andresen MC. Missing pieces of the Piezo1/Piezo2 baroreceptor hypothesis: an autonomic perspective. J Neurophysiol. 2019;122:1207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Watanabe H, Belyea BC, Paxton RL, Li M, Dzamba BJ, DeSimone DW, et al. Renin cell baroreceptor, a nuclear mechanotransducer central for homeostasis. Circ Res. 2021;129:262–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yamaguchi H, Gomez RA, Sequeira-Lopez MLS. Renin cells, from vascular development to blood pressure sensing. Hypertension. 2023;80:1580–9.

    Article  CAS  PubMed  Google Scholar 

  135. Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2012;14:22–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dalghi MG, Clayton DR, Ruiz WG, Al-Bataineh MM, Satlin LM, Kleyman TR, et al. Expression and distribution of PIEZO1 in the mouse urinary tract. Am J Physiol Ren Physiol. 2019;317:F303–21.

    Article  CAS  Google Scholar 

  137. Lu Y, Ye Y, Yang Q, Shi S. Single-cell RNA-sequence analysis of mouse glomerular mesangial cells uncovers mesangial cell essential genes. Kidney Int. 2017;92:504–13.

    Article  CAS  PubMed  Google Scholar 

  138. Karaiskos N, Rahmatollahi M, Boltengagen A, Liu H, Hoehne M, Rinschen M, et al. A single-cell transcriptome atlas of the mouse glomerulus. J Am Soc Nephrol. 2018;29:2060–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. He B, Chen P, Zambrano S, Dabaghie D, Hu Y, Möller-Hackbarth K, et al. Single-cell RNA sequencing reveals the mesangial identity and species diversity of glomerular cell transcriptomes. Nat Commun. 2021;12:2141. https://doi.org/10.1038/s41467-021-22331-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kobayashi A, Mugford JW, Krautzberger AM, Naiman N, Liao J, McMahon AP. Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Rep. 2014;3:650–62.

    Article  CAS  Google Scholar 

  141. Sequeira-Lopez ML, Lin EE, Li M, Hu Y, Sigmund CD, Gomez RA. The earliest metanephric arteriolar progenitors and their role in kidney vascular development. Am J Physiol Regul Integr Comp Physiol. 2015;308:R138–49.

    Article  CAS  PubMed  Google Scholar 

  142. Sequeira-Lopez MLS, Gomez RA. Renin cells, the kidney, and hypertension. Circ Res. 2021;128:887–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yang X, Zeng H, Wang L, Luo S, Zhou Y. Activation of Piezo1 downregulates renin in juxtaglomerular cells and contributes to blood pressure homeostasis. Cell Biosci. 2022;12:197. https://doi.org/10.1186/s13578-022-00931-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hill RZ, Shirvan S, Burquez S, Dubin AE, Servin-Vences MR, Miner JH, et al. Renal mechanotransduction is an essential regulator of renin. bioRxiv. 2023. https://doi.org/10.1101/2023.11.04.565646.

  145. Shibata S, Nagase M, Yoshida S, Kawachi H, Fujita T. Podocyte as the target for aldosterone: roles of oxidative stress and Sgk1. Hypertension. 2007;49:355–64.

    Article  CAS  PubMed  Google Scholar 

  146. Endlich K, Kliewe F, Endlich N. Stressed podocytes-mechanical forces, sensors, signaling and response. Pflug Arch. 2017;469:937–49.

    Article  CAS  Google Scholar 

  147. Haydak J, Azeloglu EU. Role of biophysics and mechanobiology in podocyte physiology. Nat Rev Nephrol. 2024;20:371–85.

    Article  PubMed  Google Scholar 

  148. Huber TB, Schermer B, Müller RU, Höhne M, Bartram M, Calixto A, et al. Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci USA. 2006;103:17079–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Forst AL, Olteanu VS, Mollet G, Wlodkowski T, Schaefer F, Dietrich A, et al. Podocyte purinergic P2X4 channels are mechanotransducers that mediate cytoskeletal disorganization. J Am Soc Nephrol. 2016;27:848–62.

    Article  CAS  PubMed  Google Scholar 

  150. Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med. 2008;14:1370–6.

    Article  CAS  PubMed  Google Scholar 

  151. Chambers L, Dorrance AM. Regulation of ion channels in the microcirculation by mineralocorticoid receptor activation. Curr Top Membr. 2020;85:151–85.

    Article  CAS  PubMed  Google Scholar 

  152. Black LM, Lever JM, Agarwal A. Renal inflammation and fibrosis: a double-edged sword. J Histochem Cytochem. 2019;67:663–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Talbott HE, Mascharak S, Griffin M, Wan DC, Longaker MT. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell. 2022;29:1161–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Shaw I, Rider S, Mullins J, Hughes J, Péault B. Pericytes in the renal vasculature: roles in health and disease. Nat Rev Nephrol. 2018;14:521–34.

    Article  CAS  PubMed  Google Scholar 

  155. Humphreys BD. Mechanisms of renal fibrosis. Annu Rev Physiol. 2018;80:309–26.

    Article  CAS  PubMed  Google Scholar 

  156. Arai H, Yanagita M. Janus-faced: molecular mechanisms and versatile nature of renal fibrosis. Kidney360. 2020;1:697–704.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Kuppe C, Ibrahim MM, Kranz J, Zhang X, Ziegler S, Perales-Patón J, et al. Decoding myofibroblast origins in human kidney fibrosis. Nature. 2021;589:281–6.

    Article  CAS  PubMed  Google Scholar 

  158. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010;176:85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Asada N, Takase M, Nakamura J, Oguchi A, Asada M, Suzuki N, et al. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. J Clin Invest. 2011;121:3981–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell. 2015;16:51–66.

    Article  CAS  PubMed  Google Scholar 

  161. Minatoguchi S, Saito S, Furuhashi K, Sawa Y, Okazaki M, Shimamura Y, et al. A novel renal perivascular mesenchymal cell subset gives rise to fibroblasts distinct from classic myofibroblasts. Sci Rep. 2022;12:5389. https://doi.org/10.1038/s41598-022-09331-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tanaka S, Portilla D, Okusa MD. Role of perivascular cells in kidney homeostasis, inflammation, repair and fibrosis. Nat Rev Nephrol. 2023;19:721–32.

    Article  PubMed  Google Scholar 

  163. Drury ER, Wu J, Gigliotti JC, Le TH. Sex differences in blood pressure regulation and hypertension: renal, hemodynamic, and hormonal mechanisms. Physiol Rev. 2024;104:199–251.

    Article  CAS  PubMed  Google Scholar 

  164. Asunción-Alvarez D, Palacios J, Ybañez-Julca RO, Rodriguez-Silva CN, Nwokocha C, Cifuentes F, et al. Calcium signaling in endothelial and vascular smooth muscle cells: sex differences and the influence of estrogens and androgens. Am J Physiol Heart Circ Physiol. 2024;326:H950–70.

    Article  PubMed  Google Scholar 

  165. John L, Ko NL, Gokin A, Gokina N, Mandalà M, Osol G. The Piezo1 cation channel mediates uterine artery shear stress mechanotransduction and vasodilation during rat pregnancy. Am J Physiol Heart Circ Physiol. 2018;315:H1019–26.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Arishe OO, McKenzie J, Dela Justina V, Dos Anjos Moraes R, Webb RC, Priviero F. Piezo1 channels mediate vasorelaxation of uterine arteries from pseudopregnant rats. Front Physiol. 2023;14:1140989. https://doi.org/10.3389/fphys.2023.1140989.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Barnett SD, Asif H, Buxton ILO. Novel identification and modulation of the mechanosensitive Piezo1 channel in human myometrium. J Physiol. 2023;601:1675–90.

    Article  CAS  PubMed  Google Scholar 

  168. Arishe OO, Ebeigbe AB, Webb RC. Mechanotransduction and uterine blood flow in preeclampsia: the role of mechanosensing Piezo 1 ion channels. Am J Hypertens. 2020;33:1–9.

    Article  CAS  PubMed  Google Scholar 

  169. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sehnal D, Bittrich S, Deshpande M, Svobodová R, Berka K, Bazgier V, et al. Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021;49:W431–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yuki Mochida, Dr. Koji Ochiai, Dr. Satoyuki Ogino, Dr. Kei Yoshikawa, and Dr. Kaori Mikami for their contributions to the experiments described in this review. We also thank Professor Emeritus George Matsumura for the illustration of Fig. 2 and Editage (www.editage.jp) for English language editing.

Funding

This work was supported in part by JSPS KAKENHI Grant Numbers JP17K09736, JP20K08616, JP23K07704, by Japan Agency for Medical Research and Development (18gm5810019h9903), and by the Salt Science Research Foundation, No. 2329.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miki Nagase.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagase, T., Nagase, M. Piezo ion channels: long-sought-after mechanosensors mediating hypertension and hypertensive nephropathy. Hypertens Res 47, 2786–2799 (2024). https://doi.org/10.1038/s41440-024-01820-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41440-024-01820-6

Keywords

This article is cited by

Search

Quick links