Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intralesional baicalein attenuates fibrosis in a rat model of peyronie’s disease by inhibiting TGF-β1/smad signaling

Abstract

TGF-β1 plays a fundamental role in the pathogenesis of Peyronie’s disease, driving the excessive extracellular matrix accumulation and fibroblast activation characteristic of fibrosis. As in many fibrotic disorders, its action via Smad transcription factors presents a key therapeutic target. Given the notable deficiency in proven effective conservative treatments for Peyronie’s disease, particularly in its acute phase, this study aimed to investigate the efficacy of baicalein, a flavonoid known to inhibit the TGF-β1/Smad signaling pathway, thereby offering a promising therapeutic strategy. We established a rat model of Peyronie’s disease on 30 male Wistar albino rats using a single intratunical injection of a combined solution containing 0.1 mL recombinant TGF-β1 protein (0.01 μg/μL) and 0.1 mL sodium tetradecyl sulfate (0.01 μg/μL, 3%), and administered baicalein intralesionally at low (0.8 μg/L, 50 μL), moderate (1.6 μg/L, 50 μL), and high (3.2 μg/L, 50 μL) doses. There were no significant differences among the groups in terms of animal weights or degrees of curvature before and after treatment. Our comprehensive analysis of blindly performed histopathological and immunohistochemical parameters, including tunica albuginea thickness, fibrosis severity, and smooth muscle content, demonstrated that intralesional baicalein suppressed fibrosis formation in corporeal bodies (p = 0.002) in a dose-dependent manner, preserved crucial cavernosal smooth muscle tissue (p = 0.005), and effectively prevented pathological increases in tunica albuginea thickness (p = 0.002). Importantly, systemic toxicity was not detected in any of the subjects. As the first study to investigate intralesional baicalein for Peyronie’s disease, our findings positively contribute to the literature and underscore its potential as a safe, accessible, and highly effective agent. Further in vitro and in vivo research is warranted to fully explore baicalein’s capacity to address current treatment gaps in this challenging condition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Measurement of tunica albuginea thickness in histological sections.
Fig. 3: Determination of the ratio of the corpora cavernosa area (blue) and fibrotic area (green).
Fig. 4: Histopathological assessment of fibrosis across groups.
Fig. 5: Evaluation of smooth muscle loss in the corpora cavernosa using alpha-smooth muscle actin staining, x4.
Fig. 6: Representative images of chondroid differentiation, bone metaplasia, and ossification detected in various subjects.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, KCS, upon reasonable request.

References

  1. Devine CJ, Somers KD, Jordan GH, Schlossberg SM. Proposal: trauma as the cause of the Peyronie’s lesion. J Urol. 1997;157:285–90. https://doi.org/10.1016/s0022-5347(01)65361-8.

    Article  PubMed  Google Scholar 

  2. Sikka S, Hellstrom W. Role of oxidative stress and antioxidants in Peyronie’s disease. Int J Impot Res. 2002;14:353–60. https://doi.org/10.1038/sj.ijir.3900880.

    Article  PubMed  CAS  Google Scholar 

  3. Vernet D, Ferrini MG, Valente EG, Magee TR, Bou-Gharios G, Rajfer J, et al. Effect of nitric oxide on the differentiation of fibroblasts into myofibroblasts in the Peyronie’s fibrotic plaque and in its rat model. Nitric Oxide. 2002;7:262–76. https://doi.org/10.1016/s1089-8603(02)00124-6.

    Article  PubMed  CAS  Google Scholar 

  4. Rhoden EL, Riedner CE, Fuchs SC, Riberio EP, Halmenschlager G. A cross-sectional study for the analysis of clinical, sexual and laboratory conditions associated to Peyronie’s disease. J Sex Med. 2010;7:1529–37. https://doi.org/10.1111/j.1743-6109.2009.01584.x.

    Article  PubMed  Google Scholar 

  5. Nachtsheim DA, Rearden A. Peyronie’s disease is associated with an HLA class II antigen, HLA-DQ5, implying an autoimmune etiology. J Urol. 1996;156:1330–4. https://doi.org/10.1016/S0022-5347(01)65579-4.

    Article  PubMed  CAS  Google Scholar 

  6. Nyberg LM, Bias WB, Hochberg MC, Walsch PC. Identification of an inherited form of peyronie’s disease with autosomal dominant inheritance and association with dupuytren’s contracture and histocompatibility B7 cross-reacting antigens. J Urol. 1982;128:48–51. https://doi.org/10.1016/s0022-5347(17)52751-2.

    Article  PubMed  Google Scholar 

  7. El-Sakka AI, Hassan MU, Nunes L, Bhatnagar RS, Yen TS, Lue TF. Histological and ultrastructural alterations in an animal model of peyronie’s disease. Br J Urol. 1998;181:445–52. https://doi.org/10.1046/j.1464-410x.1998.00529.x.

    Article  Google Scholar 

  8. El-Sakka AI, Hassoba HM, Chui RM, Bhatnagar RS, Dahiya R, Lue TF. An animal model of Peyronie’s-like condition associated with an increase of transforming growth factor beta mRNA and protein expression. J Urol. 1997;158:2284–90. https://doi.org/10.1016/s0022-5347(01)68236-3.

    Article  PubMed  CAS  Google Scholar 

  9. Border WA, Ruoslahti E. Transforming growth factor-b in disease. the dark side of tissue repair. J Clin Invest. 1992;90:1–7. https://doi.org/10.1172/JCI115821.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Jang JH, Ryu JK, Suh JK. Activin receptor-like kinase 5 inhibitor attenuates fibrosis in fibroblasts derived from Peyronie’s plaque. Korean J Urol. 2012;53:44–9. https://doi.org/10.4111/kju.2012.53.1.44.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Matsumoto T. Phytochemistry Research Progress. New York: Nova Science Publishers Inc; 2013.

    Google Scholar 

  12. Deschamps JD, Kenyon VA, Holman TR. Baicalein is a potent in vitro inhibitor against both reticulocyte 15-human and platelet 12-human lipoxygenases. Bioorg Med Chem. 2006;14:4295–301. https://doi.org/10.1016/j.bmc.2006.01.057.

    Article  PubMed  CAS  Google Scholar 

  13. Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem. 2010;147:35–51. https://doi.org/10.1093/jb/mvp148.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang YF, Zhou SZ, Cheng XY, Yi B, Shan SZ, Wang J, et al. Baicalein attenuates hypertrophic scar formation via inhibition of the transforming growth factor-β/Smad2/3 signalling pathway. Br J Dermatol. 2016;174:120–30. https://doi.org/10.1111/bjd.14108.

    Article  PubMed  CAS  Google Scholar 

  15. Salonia A, Bettocchi C, Capogrosso P, Carvalho J, Corona G, Dinkelman-Smith M, et al. EAU Guidelines on Sexual and Reproductive Health 2024. Arnhem, The Netherlands: EAU Guidelines Office; 2024. ISBN 978-94-92671-23-3.

  16. Nehra A, Alterowitz R, Culkin DJ, Faraday MM, Hakim LS, Heidelbaugh JJ, et al. Peyronie’s Disease: AUA Guideline. J Urol. 2015 Sep;194:745–53. https://doi.org/10.1016/j.juro.2015.05.098.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Faul F, Erdfelder E, Buchner E, Lang AG. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–1160. https://doi.org/10.3758/BRM.41.4.1149.

    Article  PubMed  Google Scholar 

  18. Bai H, Yuan R, Zhang Z, Liu L, Wang X, Song X, et al. Intra-articular injection of baicalein inhibits cartilage catabolism and NLRP3 inflammasome signaling in a posttraumatic OA model. Oxid Med Cell Longev. 2021;2021:6116890 https://doi.org/10.1155/2021/6116890.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Castiglione F, Cakir OO, Schifano N, Corona G, Reisman Y, Bettocchi C, et al. European society of sexual medicine consensus statement on the use of animal models for studying peyronie’s disease. Sex Med. 2023;11:qfad046 https://doi.org/10.1093/sexmed/qfad046.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chung E, Garcia F, De Young L, Solomon M, Brock GB. A comparative study of the efficacy of intralesional verapamil versus normal saline injection in a novel Peyronie disease animal model: assessment of immunohistopathological changes and erectile function outcome. J Urol. 2013;189:380–4. https://doi.org/10.1016/j.juro.2012.08.191.

    Article  PubMed  CAS  Google Scholar 

  21. Garcia F, De Young L, Chung E, Brock M, Brock G. A durable novel rat model for Peyronie’s disease. J Urol. 2012;187:e682–e683. https://doi.org/10.1016/j.juro.2012.02.1586.

    Article  Google Scholar 

  22. Tsukamoto A, Niino N, Sakamoto M, Ohtani R, Inomata T. The validity of anesthetic protocols for the surgical procedure of castration in rats. Exp Anim. 2018;67:329–36. https://doi.org/10.1538/expanim.18-0003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020;18:e3000410 https://doi.org/10.1371/journal.pbio.3000410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Peng B, Hu Q, He R, Hou H, Lian D, Chen Y, et al. Baicalein alleviates fibrosis and inflammation in systemic sclerosis by regulating B-cell abnormalities. BMC Complement Med Ther. 2023;23:62 https://doi.org/10.1186/s12906-023-03885-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kong EK, Huang Y, Sanderson JE, Chan KB, Yu S, Yu CM. Baicalein and wogonin inhibit collagen deposition in SHR and WKY cardiac fibroblast cultures. BMB Rep. 2010;43:297–303. https://doi.org/10.5483/bmbrep.2010.43.4.297.

    Article  PubMed  CAS  Google Scholar 

  26. Li B, Chen K, Qian N, Huang P, Hu F, Ding T, et al. Baicalein alleviates osteoarthritis by protecting subchondral bone, inhibiting angiogenesis and synovial proliferation. J Cell Mol Med. 2021;25:5283–94. https://doi.org/10.1111/jcmm.16538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Li WJ, Bao J, Zheng DC, Guo J, Xie MK, Chen HY, et al. Treatments of Peyronie’s disease with Scutellaria baicalensis and surgery according to the disease course: a single-center retrospective study of 261 patients. Ann Palliat Med. 2021;10:2979–89. https://doi.org/10.21037/apm-20-2389.

    Article  PubMed  Google Scholar 

  28. Paulis G, Romano G, Paulis A. Prevalence, psychological impact, and risk factors of erectile dysfunction in patients with Peyronie’s disease: a retrospective analysis of 309 cases. Res Rep Urol. 2016;8:95–103. https://doi.org/10.2147/RRU.S109319.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wespes E. Smooth muscle pathology and erectile dysfunction. Int J Impot Res. 2002;14(Suppl 1):S17–S21. https://doi.org/10.1038/sj.ijir.3900792.

    Article  PubMed  Google Scholar 

  30. Antoniassi T, Facio Junior FN, Spessoto LC, Guerra LH, Campos SS, Taboga S. Anti-fibrotic effect of mycophenolate mofetil on Peyronie’s disease experimentally induced with TGF-β. Int J Impot Res. 2020;32:201–6. https://doi.org/10.1038/s41443-019-0138-7.

    Article  PubMed  CAS  Google Scholar 

  31. Lin H, Liu C, Wang R. Effect of penile traction and vacuum erectile device for peyronie’s disease in an animal model. J Sex Med. 2017;14:1270–6. https://doi.org/10.1016/j.jsxm.2017.08.011.

    Article  PubMed  Google Scholar 

  32. Castiglione F, Hedlund P, Weyne E, Hakim L, Montorsi F, Bivalacqua TJ, et al. Intratunical injection of human adipose tissue-derived stem cells restores collagen III/I ratio in a rat model of chronic peyronie’s disease. Sex Med. 2019;7:94–103. https://doi.org/10.1016/j.esxm.2018.09.003.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

This study was financially supported by the Scientific Research Projects Unit of Istanbul University – Cerrahpasa (project number: 37567, approval date: February 7, 2024).

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and approved the final manuscript. Conceptualization: KCS, FI, MHG, HO. Data curation: KCS, FI, OG, SK. Formal analysis: KCS. Funding acquisition: KCS, FI, MHG. Investigation: KCS, FI, MHG, OG. Methodology: SK, IG, EA, HO. Project administration: KCS, FI, MHG. Resources: KCS, FI, MHG. Supervision: IG, EA, HO. Validation: SK, OG, IG. Visualization: KCS, FI, OG. Writing – original draft: KCS. Writing – review & editing: MHG, EA, HO.

Corresponding author

Correspondence to Kadir Can Sahin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics committee approval number

: E-74555795-050.01.04-794309.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahin, K.C., Irmak, F., Gultekin, M.H. et al. Intralesional baicalein attenuates fibrosis in a rat model of peyronie’s disease by inhibiting TGF-β1/smad signaling. Int J Impot Res (2025). https://doi.org/10.1038/s41443-025-01197-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41443-025-01197-1

Search

Quick links