Fig. 3

Attenuation of THz plasmonic resonances. a Schematic diagram of the device composed of a high resistivity silicon substrate with a 200 nm perforated aluminum film topped by a 200 nm thick 2D perovskite thin film. b Transmission spectrum of the aperture array demonstrating negligible attenuation for the n = 1 perovskite/Si sample when excited with 700 nm long pass filter (i.e., no excitons are generated). c–e Optical excitation induced attenuation of the transmitted THz transmission through the metallic hole array. The dips on the high frequency side of the two lowest order resonances occur at . These arrays were excited using 500 nm long pass, 600 nm long pass, and 700 nm long pass filters, respectively. The optical excitation range is shown above each spectrum. Nearly 100% attenuation of the plasmonic resonances was achieved as the lamp flux was increased (the arrow direction corresponds to increasing lamp flux)