Fig. 8 | Nature Communications

Fig. 8

From: Lower plate serpentinite diapirism in the Calabrian Arc subduction complex

Fig. 8

Schematic block diagram and cross section of the Western Calabrian Arc. a Block diagram of the Western Calabrian Arc subduction complex showing relationships between deep slab, transtensional faults, serpentinite diapirs, and Mt. Etna volcano (modified from refs. 62,69). Faulting associated with arc-perpendicular extensional tectonics in the accretionary wedge (modified from ref. 17) is shown in the yellow corridor between the Ionian and Alfeo-Etna fault systems. Extensional processes and associated Mt. Etna volcanism could be related to vertical upwelling of the asthenosphere at the SW lateral edge of the Ionian slab62,63,79. At the edges of a retreating slab the toroidal component of asthenospheric flow may induce an upward flow and decompression melting which could explain the formation of Mt. Etna2. Transtensional processes along the rifting zone between the Alfeo-Etna and Ionian fault may drive inherited serpentinite diapirism during slab tearing processes. b Sketch of the margin structure orthogonal to the arc based on interpretation of available multichannel seismic and Vp/Vs data26. Section D-D’ (location also indicated in Fig. 5) crosses the Calabrian Arc accretionary wedge, the inherited serpentinite diapir field, and Mt. Etna implying structural control on both diapirism and Mt. Etna formation. AEF, Alfeo-Etna fault; EL, eastern lobe of the accretionary wedge; IF, Ionian fault; OCT, Oceanic-continental transition; WL, western lobe of the accretionary wedge

Back to article page