Fig. 3
From: Cellular conditions of weakly chelated magnesium ions strongly promote RNA stability and catalysis

Amino acid-chelated magnesium reduces RNA degradation according to ILP reactivities. a ILP on the drz-spur-3 ribozyme. Lane 1–2 and 20–21 are RNase T1 ladders (G). Lane 3 and 19 are alkaline hydrolysis ladders (OH–). Lane 4–6 are time-dependent ILPs in the presence of 13.3 mM Mg2+total. Lane 7–9 are that in the presence of 96 mM glutamate and 13.3 mM Mg2+total (2 mM Mg2+free). Lane 10–12 are that in the presence of 106 mM amino acids and 16 mM Mg2+total (2 mM Mg2+free). Lane 13–15 are that in the presence of 11.3 mM EDTA and 13.3 mM Mg2+total (2 mM Mg2+free). Lane 16–18 are that in the presence of 2 mM Mg2+total for a control. Concentrations of binding donors are the same as in Fig. 1. b Relative ILP reactivity at 24 h at each nucleotide position is shown. The relative reactivity in high Mg2+ condition was set at 1.0. The error bars show average errors (n = 2). c ILP reactivity in the presence of 13.3 mM Mg2+ referenced to U49. Nucleotides colored in blue show the positions where ILP reactivity is greater than 7.5% of U49. Red arrows denote positions of ILP reactivity where gluCM offers protection