Fig. 5 | Nature Communications

Fig. 5

From: A novel environment-evoked transcriptional signature predicts reactivity in single dentate granule neurons

Fig. 5

Early and late signatures discriminate Reactivated from Newly Activated neurons. a WT mice were exposed to NE A for 15 min, returned to HC for 4 h, and re-exposed to A or to a different environment C. b Distance traveled during a 15-min NE for mice exposed twice to the same environment or to two different environments (n = 8 per group, mean ± S.E.M., **p < 0.01, two-way ANOVA with Sidak’s multiple comparisons test). c One hour after the second exposure, FOS and ARC protein levels alone cannot discriminate Newly Activated from Reactivated DG neurons. d One hour after the second exposure, FOS and ARC in DG neurons (PROX1+CTIP2+) were measured by flow cytometry. ARC+FOS+ DG neurons (red gate) = Newly Activated and Reactivated; ARC+FOS− DG neurons (blue gate) = Not Reactivated. Representative FACS plots of n = 6 mice. e T-SNE of all DG nuclei from the HC and single exposure (open circles) or double exposure (filled circles). Clusters that represent the baseline, early, and late signatures are noted in gray text. The group of ARC+FOS+ nuclei that clusters with the early signature is designated as putatively Newly Activated; and those that cluster with the late signature are designated as putatively Reactivated. f The proportion of Newly Activated and Reactivated nuclei were calculated for each exposure condition. * = Chi-square test p < 0.05. g Euler diagram of all early (left) and late (right) signature genes that are increased compared to HC in either the Newly Activated (NA) or Reactivated (R) nuclei. h Violin plots of representative genes for the early and late signatures. Env = context the mouse was exposed to, time = time in hours between exposure to the first context and sacrifice, FOS = FOS protein status by FACS, activity state = gene signature. i Summary of terminology. Newly Activated nuclei exhibit an early transcriptional signature, Not Reactivated nuclei exhibit the late signature, and nuclei that are activated in both contexts are expected to display both the early and late signatures (Reactivated)

Back to article page