Fig. 1 | Nature Communications

Fig. 1

From: Double helical conformation and extreme rigidity in a rodlike polyelectrolyte

Fig. 1

PBDT structural motifs along with experimental and simulated XRD results. a X-ray diffraction pattern for 20 wt% PBDT aqueous solution. The main diffractions are labeled A, B, C, D, E, and F and the helix tilt angle is θ. b The simulated X-ray diffraction pattern based on the HELIX software package (see also Supplementary Figure 1). The layer lines 1, 2, and 3 in the simulated results clearly mimic the experimental results. c The chemical repeat unit of PBDT includes one set of –SO3 groups (two sulfonate groups from one biphenyl unit) and two –NHCO– groups, each of which are mutually connected by one benzene ring. d The second PDBT strand is shifted 8.4 Å (B = P/4) away from the first strand along the helix axis. Numerous intermolecular interactions between chains (notably hydrogen bonding, dipole–dipole, and/or ion–dipole interactions between –SO3 and –NHCO– groups—shown as green dashed lines) and the rotation of each subunit contribute to the double helical conformation. e PBDT double helices self-assemble into an aligned (nematic) morphology in aqueous solution. The purple dots refer to Na+ counterions. The red dots are water molecules. f Elucidation of interchain bonding and molecular packing for PBDT with the double helical conformation. The helical parameters used for the X-ray simulation are also listed (P = 33.6 Å, h = 5.6 Å, a = 4 Å, Azimuthal shift = 180°)

Back to article page