Fig. 10

Key phases of the CENP-E-dependent microtubule (MT) end-conversion in cells. Schematics show multimolecular ensemble of CENP-E kinesins and Ndc80 complexes, forming a molecular lawn that interacts with the MT. a Ndc80 slows down CENP-E kinesin during the plus-end–directed transport. Ndc80 plays an essential role in providing durable and mobile attachment to the end-proximal MT wall. In our in vitro experiments and in silico, these molecular interactions are concentrated at one side of the MT, which forms oblique contact with the molecular lawn. This configuration is also likely to occur transiently at the kinetochores of mitotic cells, as shown in b. However, forces acting on the chromosomes and kinetochore-bound MTs reorient the kinetochore, promoting the classical end-on configuration (c). We propose that in this configuration, kinetochore attachment is mediated by essentially the same molecular interactions with the MT wall, as described in this work