Fig. 1 | Nature Communications

Fig. 1

From: Deep-ocean mixing driven by small-scale internal tides

Fig. 1

Regional and global energy budgets for the M2 tide. Stacked histograms represent energy conversion into mode 1 (\(E_{{\mathrm{M}}_2}^1\), starred areas), modes 2-∞ (\(E_{{\mathrm{M}}_2}^{2 - \infty }\), here excluding \(E_{{\mathrm{M}}_2}^{{\mathrm{hills}}}\), diagonally hatched areas) and the contribution from abyssal hills (\(E_{{\mathrm{M}}_2}^{{\mathrm{hills}}}\), vertically hatched areas). Note that \(E_{{\mathrm{M}}_2}^{1 - \infty } = E_{{\mathrm{M}}_2}^1 + E_{{\mathrm{M}}_2}^{2 - \infty } + E_{{\mathrm{M}}_2}^{{\mathrm{hills}}}\). Red stars are the divergence of altimetry-derived M2 mode-1 energy flux, \((\nabla \cdot {\mathbf{F}}_{{\mathrm{M}}_2}^1)^ +\), and red bullets are the barotropic tide energy loss (\(D_{{\mathrm{M}}_2}\)). Error bars show ±20% of \(D_{{\mathrm{M}}_2}\) as suggested in Egbert and Ray26 for deep-ocean integrals. The inset map shows the boundaries separating the different basins. Budgets are computed for seafloor depths greater than 700 m

Back to article page