Table 1 Optimization of electrochemical oxidation of benzyl alcohol 1aa

From: Direct electrochemical oxidation of alcohols with hydrogen evolution in continuous-flow reactor

View full size image

Entry

Current

Reaction time

Current density

Flow rate

Yield (%)a

1b

100 mA

1 h

44.44 mA cm−2

Undivided cell

37

2

10 mA

10 h

0.64 mA cm−2

0.10 mL s−1

93

3

50 mA

2 h

3.19 mA cm−2

0.10 mL s−1

92

4

100 mA

1 h

6.38 mA cm−2

0.10 mL s−1

89

5

500 mA

12 min

31.89 mA cm−2

0.10 mL s−1

90

6

800 mA

8 min

51.02 mA cm−2

0.10 mL s−1

91

7

1000 mA

6 min

63.78 mA cm−2

0.10 mL s−1

81

8

800 mA

10 min

51.02 mA cm−2

0.10 mL s−1

99

9

800 mA

10 min

51.02 mA cm−2

0.05 mL s−1

67

10

800 mA

10 min

51.02 mA cm−2

0.15 mL s−1

95

11

800 mA

10 min

51.02 mA cm−2

0.20 mL s−1

84

  1. Reaction conditions: carbon paper (93 × 93 × 0.2 mm) anode (contact area 1.6 cm2), Ni plate (93 × 93 × 0.3 mm) cathode (contact area 1.6 cm2), 1aa (2.0 mmol), nBu4NBF4 (0.20 mmol), CH3CN/H2O (1:1, 30 mL), N2, room temperature, flow cell (2.49 F mol−1)
  2. aIsolated yield
  3. bCarbon cloth (15  × 15  ×  0.2  mm) anode, Ni plate (15  × 15 × 0.5  ) cathode, 1aa (2.0  mmol), nBu4NBF4 (0.20  mmol), CH3CN/H2O (1:1, 30  mL), N2, room temperature, undivided cell (1.86  F  mol−1)