Table 1 Summary of monopole transformations on square (staggered flux state) and honeycomb lattices, where Φ1/2/3 are spin singlet monopoles (Φ± = Φ1 i Φ2) and Φ4/5/6 are spin triplet monopoles

From: Unifying description of competing orders in two-dimensional quantum magnets

Lattice

 

T 1

T 2

R x

Rotation

\({\cal{T}}\)

Note

Square

\({{\Phi}}_{\mathrm{{1}}}^{\mathrm{\dag}}\)

\({{\Phi }}\) 1

\(-{{\Phi }}\) 1

\(-{{\Phi }}\) 1

\(-{{\Phi }}\) 3

\({\mathrm{\Phi }}_1^\dag\)

\({\mathrm{Re}}[{\mathrm{\Phi }}_1]\) as \(\bar \psi \tau ^3\psi\)

Square

\({\mathbf{\Phi}}_{\mathrm{{2}}}^{\mathrm{\dag}}\)

\(-{{\Phi }}\) 2

\(-{{\Phi }}\) 2

\(-{{\Phi }}\) 2

\(-{{\Phi }}\) 2

\(- {\mathrm{\Phi }}_2^\dag\)

\({\mathrm{Im}}[{\mathrm{\Phi }}_2]\) trivial

Square

\({{\Phi }}_3^\dag\)

\(-{{\Phi }}\) 3

\({{\Phi }}\) 3

\({{\Phi }}\) 3

\({{\Phi }}\) 1

\({{\Phi }}_3^{\dag}\)

\({\mathrm{Re}}[{\mathrm{\Phi }}_3]\) as \(\bar \psi \tau ^1\psi\)

Square

\({{\Phi }}_{4/5/6}^\dag\)

\(-{{\Phi }}\) 4/5/6

\(-{{\Phi }}\) 4/5/6

\({{\Phi }}\) 4/5/6

\({{\Phi }}\) 4/5/6

\(- {\mathrm{\Phi }}_{4/5/6}^\dag\)

\({\mathrm{Re}}[{\mathrm{\Phi }}_{4/5/6}]\) as \(\bar \psi \tau ^2 \otimes \sigma ^{1/2/3}\psi\)

Honeycomb

\({\mathrm{\Phi }}_ + ^\dag\)

\({\mathrm{{e}}}^{ - i\frac{{2\pi }}{3}}{\mathrm{\Phi }}_ + ^\dag\)

\({\mathrm{{e}}}^{ - i\frac{{2\pi }}{3}}{\mathrm{\Phi }}_ + ^\dag\)

\({{\Phi }}\) +

\({\mathrm{{e}}}^{i\frac{\pi }{3}}{\mathrm{\Phi }}_ - ^\dag\)

\({{\Phi }}\) +

\({\mathrm{Im}}[{\mathrm{\Phi }}_1]\) as \(\bar \psi \tau ^1\psi\)

Honeycomb

\({\mathrm{\Phi }}_ - ^\dag\)

\({\mathrm{{e}}}^{i\frac{{2\pi }}{3}}{\mathrm{\Phi }}_ - ^\dag\)

\({\mathrm{{e}}}^{i\frac{{2\pi }}{3}}{\mathrm{\Phi }}_ - ^\dag\)

\({{\Phi }}\)

\({\mathrm{{e}}}^{i\frac{\pi }{3}}{\mathrm{\Phi }}_ + ^\dag\)

\({{\Phi }}\)

\({\mathrm{Im}}[{\mathrm{\Phi }}_2]\) as \(\bar \psi \tau ^2\psi\)

Honeycomb

\({\mathbf{\Phi }}_{\mathrm{{3}}}^{\mathrm{\dag}}\)

\({\mathrm{\Phi }}_3^\dag\)

\({\mathrm{\Phi }}_3^\dag\)

\({{\Phi }}\) 3

\({\mathrm{\Phi }}_3^\dag\)

\({{\Phi }}\) 3

\({\mathrm{Re}}[{\mathrm{\Phi }}_3]\) trivial

Honeycomb

\({\mathrm{\Phi }}_{4/5/6}^\dag\)

\({\mathrm{\Phi }}_{4/5/6}^\dag\)

\({\mathrm{\Phi }}_{4/5/6}^\dag\)

\(-{{\Phi }}\) 4/5/6

\(- {\mathrm{\Phi }}_{4/5/6}^\dag\)

\(-{{\Phi }}\) 4/5/6

\({\mathrm{Im}}[{\mathrm{\Phi }}_{4/5/6}]\) as \(\bar \psi \tau ^3 \otimes \sigma ^{1/2/3}\psi\)

  1. Symmetry operations T1/2, Rx denote translation along two lattice vectors (for honeycomb T1/2 direction has 2π/3 angle between them) and reflection along horizontal bonds, respectively. Rotation implies site centered four-fold rotation for the square lattice and hexagon centered six-fold rotation for the honeycomb. There is always a trivial monopole (highlighted in bold) for DSLs on both these bipartite lattices. On proliferating the trivial monopole the emergent symmetry is reduced from U(1)top × SO(6) → SO(5), and the 15 SO(6) adjoint fermion bilinears spilt according to 5 + 10. The five fermion bilinears, which form an SO(5) vector, are now symmetry equivalent to five monopoles, as listed in the last column, which is relevant to the chiral symmetry breaking pattern described in the discussion of Eq. (10)