Table 1 Inflation factors of type IA tilings with 1 ≤ n ≤ 5 and n ≤ m ≤ n + 6a

From: Metallic-mean quasicrystals as aperiodic approximants of periodic crystals

m

n

1

2

3

4

5

n

\(\frac{{{\mathbf{3}} + \sqrt {{\mathbf{13}}} }}{{\mathbf{2}}}\)

\(2 + \sqrt 6 \)

\(\frac{{5 + \sqrt {37} }}{2}\)

\(3 + \sqrt {13} \)

\(\frac{{7 + \sqrt {69} }}{2}\)

n + 1

\(2 + \sqrt 3 \)

5

\({\mathbf{3 + }}\sqrt {{\mathbf{10}}} \)

\(\frac{{7 + \sqrt {57} }}{2}\)

\(4 + \sqrt {19} \)

n + 2

\(\frac{{5 + \sqrt {13} }}{2}\)

\(3 + \sqrt 7 \)

\(\frac{{7 + 3\sqrt 5 }}{2}\)

8

\(\frac{{{\mathbf{9 + }}\sqrt {{\mathbf{85}}} }}{{\mathbf{2}}}\)

n + 3

5

\(\frac{{7 + \sqrt {33} }}{2}\)

\(4 + \sqrt {13} \)

\(\frac{{9 + \sqrt {73} }}{2}\)

\(5 + 2\sqrt 6 \)

n + 4

\(\frac{{7 + \sqrt {21} }}{2}\)

\(4 + \sqrt {10} \)

\(\frac{{9 + \sqrt {61} }}{2}\)

\(5 + \sqrt {21} \)

\(\frac{{11 + \sqrt {109} }}{2}\)

n + 5

\(4 + \sqrt 7 \)

8

\(5 + 3\sqrt 2 \)

\(\frac{{11 + \sqrt {97} }}{2}\)

\(6 + \sqrt {31} \)

n + 6

\(\frac{{9 + \sqrt {37} }}{2}\)

\(5 + \sqrt {15} \)

\(\frac{{11 + \sqrt {85} }}{2}\)

\(2(3 + \sqrt 7 )\)

\(\frac{{13 + \sqrt {141} }}{2}\)

  1. aThe multiple-of-3 metallic-mean inflation factors are typeset in boldface