Table 1 Chronological age prediction accuracy for the considered methods.
From: Brain age prediction using deep learning uncovers associated sequence variants
| Â | Type | Method | Val MAE | Val \({R}^{2}\) | Test MAE | Test \({R}^{2}\) | No. I |
|---|---|---|---|---|---|---|---|
(A) | T1-weighted | CNN | 3.996 | 0.810 | 4.006 | 0.829 | 1815 |
| Â | Jacobian | CNN | 4.801 | 0.710 | 4.804 | 0.758 | 1815 |
| Â | Gray matter | CNN | 4.766 | 0.721 | 4.641 | 0.776 | 1815 |
| Â | White matter | CNN | 4.676 | 0.735 | 4.189 | 0.812 | 1815 |
(B) | MV (T1 and JM) | CNN | 4.102 | 0.803 | 3.919 | 0.841 | 1815 |
| Â | MV (GM and WM) | CNN | 4.172 | 0.790 | 3.674 | 0.849 | 1815 |
| Â | MV (T1, JM, and GM) | CNN | 3.964 | 0.813 | 3.838 | 0.847 | 1815 |
| Â | MV (T1, JM, GM, and WM) | CNN | 3.845 | 0.849 | 3.584 | 0.849 | 1815 |
| Â | LRB (T1, JM, GM, and WM) | CNN | 3.581 | 0.847 | 3.388 | 0.872 | 1815 |
(C) | SBM | RR | 5.268 | 0.689 | 5.176 | 0.697 | 1320 |
| Â | VBM | GPR | 4.278 | 0.781 | 4.317 | 0.766 | 1794 |
| Â | SM | RR | 4.898 | 0.722 | 4.937 | 0.728 | 1815 |
| Â | MV (SBM, VBM, and SM) | GPR/RR | 4.008 | 0.808 | 3.940 | 0.761 | 1246 |
| Â | LRB (SBM, VBM, and SM) | GPR/RR | 3.906 | 0.812 | 3.849 | 0.766 | 1246 |