Table 1 Parameters of three samples. The bare Josephson energy \({E}_{{\rm{J,bare}}}^{{\rm{AB}}}\) is inferred using the Ambegaokar–Baratoff law. \({E}_{{\rm{J}}}^{* }\) is the measured value of the renormalized Josephson energy. As a consistency check, the bare value \({E}_{{\rm{J,bare}}}^{{\rm{th}}}\) is also extracted from the fit of \({E}_{{\rm{J}}}^{* }\) using the SCHA. \({C}_{{\rm{sh}}}\) is the capacitance shunting the small Josephson junction (see Supplementary Note 9). \(C\), \({C}_{{\rm{g}}}\), and \(L\) are obtained from the dispersion relation of the chain (see Supplementary Note 10)

From: Observation of quantum many-body effects due to zero point fluctuations in superconducting circuits

Sample

A

B

C

Small junction

   

Area [\(\mu {m}^{2}\)]

315 × 195

370 × 190

440 × 185

\({C}_{{\rm{J}}}\) [fF]

2.7 \(\pm\) 0.3

3.2 \(\pm\) 0.3

3.7 \(\pm\) 0.4

\({C}_{{\rm{sh}}}\) [fF]

3.0 \(\pm\) 0.5

2.4 \(\pm\) 0.4

5.1 \(\pm\) 1.0

\({E}_{{\rm{J}}}^{* }\)[GHz]

1.8 \(\pm\) 0.1

3.1 \(\pm\) 0.2

5.7 \(\pm\) 0.3

\({E}_{{\rm{J,bare}}}^{{\rm{AB}}}\) [GHz]

3.7 \(\pm\) 0.2

5.8 \(\pm\) 0.3

6.8 \(\pm\) 0.5

\({E}_{{\rm{J,bare}}}^{{\rm{th}}}\) [GHz]

3.7

5.5

8.2

Nonlinearity \({E}_{{\rm{J,bare}}}/{E}_{{\rm{c}}}\)

0.27

0.40

0.93

Renormalization \({E}_{{\rm{J}}}^{* }/{E}_{{\rm{J,bare}}}\)

0.49

0.56

0.70

Chain

   

\(C\) [fF]

144

144

144

\({C}_{{\rm{g}}}\) [fF]

0.189

0.192

0.181

\(L\) [nH]

0.66

0.60

0.61

\({E}_{{\rm{J}}}/{E}_{{\rm{c}}}\)

460

506

498