Table 1 The symmetry representation of the 2D and 3D sd-hybridized models in the main text (Eqs. (1), (3), (4), (5), and (6)).

From: Strong and fragile topological Dirac semimetals with higher-order Fermi arcs

Symmetries of 2D Hamiltonians \( {\mathcal{H}}({k}_{x},{k}_{y}) \)

g

\( g{\mathcal{H}}(g{k}_{x},g{k}_{y}){g}^{-1} \)

Mx

\( {\sigma }^{x}{\mathcal{H}}(-{k}_{x},{k}_{y}){\sigma }^{x} \)

My

\( {\sigma }^{y}{\mathcal{H}}({k}_{x},-{k}_{y}){\sigma }^{y} \)

C4z

\( {\tau }^{z}\left(\frac{{{\mathbb{1}}}_{\sigma }-i{\sigma }^{z}}{\sqrt{2}}\right){\mathcal{H}}({k}_{y},-{k}_{x}){\tau }^{z}\left(\frac{{{\mathbb{1}}}_{\sigma }+i{\sigma }^{z}}{\sqrt{2}}\right) \)

Mz

\( {\sigma }^{z}{\mathcal{H}}({k}_{x},{k}_{y}){\sigma }^{z} \)

\( {\mathcal{I}} \)

\( {\mathcal{H}}(-{k}_{x},-{k}_{y}) \)

\( {\mathcal{T}} \)

\( {\sigma }^{y}{{\mathcal{H}}}^{* }(-{k}_{x},-{k}_{y}){\sigma }^{y} \)

Symmetries of 3D Hamiltonians \( {\mathcal{H}}({k}_{x},{k}_{y},{k}_{z}) \)

g

\( g{\mathcal{H}}(g{k}_{x},g{k}_{y},g{k}_{z}){g}^{-1} \)

Mx

\( {\sigma }^{x}{\mathcal{H}}(-{k}_{x},{k}_{y},{k}_{z}){\sigma }^{x} \)

My

\( {\sigma }^{y}{\mathcal{H}}({k}_{x},-{k}_{y},{k}_{z}){\sigma }^{y} \)

C4z

\( {\tau }^{z}\left(\frac{{{\mathbb{1}}}_{\sigma }-i{\sigma }^{z}}{\sqrt{2}}\right){\mathcal{H}}({k}_{y},-{k}_{x},{k}_{z}){\tau }^{z}\left(\frac{{\mathbb{1}}_{\sigma }+i{\sigma }^{z}}{\sqrt{2}}\right) \)

Mz

\( {\sigma }^{z}{\mathcal{H}}({k}_{x},{k}_{y},-{k}_{z}){\sigma }^{z} \)

\( {\mathcal{I}} \)

\( {\mathcal{H}}(-{k}_{x},-{k}_{y},-{k}_{z}) \)

\( {\mathcal{T}} \)

\( {\sigma }^{y}{{\mathcal{H}}}^{* }(-{k}_{x},-{k}_{y},-{k}_{z}){\sigma }^{y} \)

  1. The models in Eqs. (36) derive from Eq. (1), which contains the symmetries (wallpaper group28 p4m) of a QI23,24 (Supplementary Note 3), as well as Mz, \( {\mathcal{I}}={M}_{x}{M}_{y}{M}_{z} \), and \( {\mathcal{T}} \).