Fig. 4: Simulations of ET dynamics with bi-exponential solvation process. | Nature Communications

Fig. 4: Simulations of ET dynamics with bi-exponential solvation process.

From: Effects of nonequilibrium fluctuations on ultrafast short-range electron transfer dynamics

Fig. 4

The solvation correlation function is given by, \(S\left( t \right) = c_1e^{ - t/\tau _D^{{\mathrm{fast}}}} + \left( {1 - c_1} \right)e^{ - t/\tau _D^{{\mathrm{slow}}}}\), where \(\tau _D^{{\mathrm{fast}}} = 2.6\) ps, and \(\tau _D^{{\mathrm{slow}}} = 40\) ps. a Evolution of the diffusion coefficient, D(t) (Eq. 25), with different values of c1. The inset is the evolution of S(t) (Eq. 14). b Evolution of the dynamic factor γ as a function of τET with different values of c1. c Simulations of ET dynamics with different values of c1 while \(\tau _{{\mathrm{ET}}} \ll \tau _D^{{\mathrm{fast}}}\). The values of parameters used are, J = 0.02 eV, ΔGo = −0.9 eV, λi = 0.8 eV, \(\lambda _o^{{\mathrm{eq}}} = 0.4\) eV, and ΔEsol = 0.026 eV. d Simulations of ET dynamics with different values of c1 while \(\tau _{{\mathrm{ET}}}\sim \tau _D^{{\mathrm{fast}}}\). Here, ΔGo = −0.6 eV, and other parameters are the same as c. e Simulations of ET dynamics with different values of c1 while \(\tau _{{\mathrm{ET}}}\sim \tau _D^{{\mathrm{slow}}}\). Here, ΔGo = −0.5 eV. f Simulations of ET dynamics with different values of c1 while \(\tau _{{\mathrm{ET}}} \gg \tau _D^{{\mathrm{slow}}}\). Here, ΔGo = −0.2 eV.

Back to article page