Fig. 5: Selected advances in crystallographic characterization of the electrode materials.
From: Solid state chemistry for developing better metal-ion batteries

a The structure of “honeycomb”-ordered layers in the Li-rich layered oxides (exemplified with Li2MnO3) and three energetically equivalent lateral displacements of the adjacent layers giving rise to the stacking disorder. b Profiles of the reflections in the XRPD pattern of Li2MnO3 prepared at different temperatures and from different precursors. The profiles of the reflections originating from the “honeycomb” ordering (outlined in green) are affected by stacking faults in various concentrations (reproduced from ref. 61 with permission from the Royal Society of Chemistry). c Electron diffraction tomography experiment in a TEM cell with liquid electrolyte and Si3N4 windows: scheme of the cell and data collection procedure, 3D reciprocal space reconstruction (domains of diffracted intensity at the Bragg positions are shown in green) and difference Fourier map showing the Li positions in the LiFePO4 structure. Scale bar is 5 nm−1 (reproduced from ref. 66 with permission from the American Chemical Society). d Projected charge density dDPC maps of Li0.95CoO2 and Li0.4CoO2: note clear reduction of the charge density at the Li layers. Defects due to migration of the Co atoms from its native octahedral sites (CoO) to the tetrahedral interstices (Cot) are clearly seen in the enlarged part of the image of the charged Li0.4CoO2 material. Scale bar is 0.5 nm.