Table 1 Comparison of the implementation of a basic neural computation with n input neurons and 1 output neuron.

From: A co-design framework of neural networks and quantum circuits towards quantum advantage

Layers

FC(C)58

FC(Q)31

P-LYR 

U-LYR 

 

Space

O(n) (or O(1))

\(O({\mathrm{log}}\,n)\)

O(n)

\(O({\mathrm{log}}\,n)\)

Complexity

Time

O(1) (or O(n))

O(n)

\(O(n\cdot \mathrm{log}\,n)\)

\(O({\mathrm{log}\,}^{2}n)\)

 

Cost

O(n)

\(O(n\cdot {\mathrm{log}}\,n)\)

\(O({n}^{2}\cdot {\mathrm{log}}\,n)\)

\(O({\mathrm{log}\,}^{3}n)\)

Data type

Input data

F32

Bin

R.V.

F32

 

Weights

Bin (F32)

Bin

Bin (R.V.)

Bin

Conn. w/o measurement

 × 

Summary

Flexibility

 × 

 × 

 

Qu. Adv.

 × 

 ×