Fig. 6: C. difficile R20291 toxin activity similarly shapes the host gut transcriptome and microbiota community structure in mice. | Nature Communications

Fig. 6: C. difficile R20291 toxin activity similarly shapes the host gut transcriptome and microbiota community structure in mice.

From: Clostridioides difficile exploits toxin-mediated inflammation to alter the host nutritional landscape and exclude competitors from the gut microbiota

Fig. 6

a Total C. difficile CFUs (vegetative and spores) in feces over time (n = 8 mice for WT R20291 and n = 6 for or ΔtcdR mice; note that not every mouse provided a stool sample). b Fecal spore CFUs over time (n = 6–8 mice per group per day, *p = 0.0318). c Toxin activity in the cecal content of R20291 or ΔtcdR mice, as assessed by the Vero cell cytotoxicity assay (n = 5 mice per group on day 2, n = 4 mice per group on day 4, *p = 0.0383, **p = 0.0055). d Log2 fold change of Mmp and Timp expression (n = 3 mice per group) derived from NanoString transcriptome analysis (log2 fold change ±1 and adjusted p < 0.05). e Average percent relative abundances of 16S rRNA amplicon sequences from cecal tissue isolated at day 4 (n = 5 mice per group). One-way Kruskal–Wallis test with Dunn’s correction for multiple comparisons was used to test for statistical significance for (a) and (b). A mixed effects model with the Geissner-Greenhouse correction and Sidak’s multiple comparisons test was used for (c). Significance was determined in (d) by NanoString nSolver Advanced analysis software.

Back to article page