Table 1 Structural and mechanical parameters of various injectable formulations.

From: Injectable non-leaching tissue-mimetic bottlebrush elastomers as an advanced platform for reconstructive surgery

Crosslink chemistrya

Ratiob

\({n}_{{sc}}\)c

\({n}_{{bb}}\)d

\({n}_{x}\)e

E (kPa)f

βg

\({E}_{0}\) (kPa)h

\({\lambda }_{{\max }}^{{\exp }}\)i

\({\lambda }_{{\max }}^{{calc}}\) j

Dual component permanent injectable elastomers

NCO:OH

1:1

14

889

50

18.6

0.24

27.8

2.1

2.0

NCO:OH

1:2

14

889

100

11.1

0.12

13.5

2.7

2.9

NCO:OH

1:4

14

889

200

4.2

0.10

5.1

3.2

3.2

NCO:OH

1:8

14

889

400

2.1

0.08

2.3

3.6

3.5

NCO:OH

1:1

70

304

50

3.0

0.31

5.3

1.9

1.8

NCO:OH

1:2

70

304

100

1.3

0.26

2.1

2.2

2.0

Injectable elastomers with dynamic crosslinks

F:M

1:1

14

889

50

15.3

0.23

22.3

2.1

2.1

F:M

2:1

14

889

100

6.3

0.14

7.8

2.7

2.6

F:M

4:1

14

889

200

1.5

0.12

1.8

2.9

2.8

Single component photocurable injectable elastomers

PCMA

1.5

14

889

100

4.8

0.06

5.2

4.2

4.1

PCMA

3

14

889

200

1.7

0.05

1.8

4.9

4.5

  1. aChemistry used for injectable elastomers with isocyanate (NCO) coupled with hydroxyl (OH) or amine (NH2) (Figs. 1–3) furan (F) coupled with maleimide (M) (Supplementary Fig. 10) and photocurable methacrylate (PCMA) (Supplementary Fig. 11) side chain ends.
  2. bRespectively ratios of each moiety in the chemistry couple. For PCMA, the ratio represents the controlled fraction percent of side chains with the photocurable moiety (i.e., 1.5 and 3 mol%).
  3. cDegrees of polymerization (DP) of side-chains.
  4. dBackbone of random polydimethylsiloxane-poly(ethylene glycol) (PDMS-r-PEG) bottlebrush macromolecules prior to crosslinking determined by 1H-NMR.
  5. eNominal DP of the backbone strand between cross-links.
  6. fStructural Young’s modulus (E).
  7. gStrain-stiffening parameter (\(\beta\)) obtained by fitting stress-strain curves with Eq. (1).
  8. hYoung’s modulus (Eq. 2).
  9. iExperimental elongation at break.
  10. jTheoretical elongation at break as \({\lambda }_{{\max },{theo}}={\beta }^{-0.5}\).