Table 2 Characteristics of the superconducting phase(s) in YbRh2Si2 and 174YbRh2Si2.

From: Superconductivity in an extreme strange metal

Sample

Tc (mK)

\(\frac{-d{B}_{{{{\rm{c}}}}2}}{dT}{| }_{{T}_{{{{\rm{c}}}}}}\) (\(\frac{{{{\rm{T}}}}}{{{{\rm{K}}}}}\))

ξGL (nm)

kF (\(\frac{1}{{{{\rm{nm}}}}}\))

\({l}_{{{{\rm{tr}}}}}\) (nm)

λGL (μm)

\({B}_{{{{\rm{c}}}}2}^{\prime}\) (mT)

Bp (mT)

α

YbRh2Si2

7.9

4.4

97

5.2

371

1.8

24

15

0.011

174YbRh2Si2

3.4

2.1

215

4.8

976

2.0

5.0

6.4

0.0065

  1. Both Tc(B) and Bc2(T) are defined as the midpoints of the resistive transitions (see Figs 1c, d and 2a, b). The zero-field values Tc [=Tc(H = 0)] as well as the upper critical field slopes \(-d{B}_{{{{\rm{c}}}}2}/dT{| }_{{T}_{{{{\rm{c}}}}}}\) are determined from linear fits to the data at small fields (red lines in Fig. 4). Listed are also estimates of the Ginzburg–Landau coherence length ξGL, the average Fermi wavevector kF, the transport scattering length \({l}_{{{{\rm{tr}}}}}\), the Ginzburg–Landau penetration depth λGL, the (orbital limiting) upper critical field \({B}_{{{{\rm{c}}}}2}^{\prime}\), and the Pauli limiting field Bp (see text). α is the prefactor of the scattering rate 1/τ = αkBT/ of a simple Drude conductor, estimated from Tc, ξGL (both below), and \({\gamma }_{{{{\rm{KW}}}}}^{0\ {{{\rm{T}}}}}\) (from Table 1), as explained in the Supplementary Note 2: Estimates on Planckian dissipation; “Planckian dissipation” refers to α = 1.