Table 2 Training and testing set for CRC patch-level models.

From: Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images

Model

Class

Dataset-PATT

  

Dataset-PAT

  

Training set

 

Testing set

 
  

Labeled

Unlabeleda

  

Model-5%-SSL

Cancer

1645

21,390

9828

14,317

 

Non-cancer

1505

19,560

8991

85,683

 

Total

3150/5%b

40,950/65%c

18,819/30%d

100,000

Model-10%-SSL

Cancer

3290

19,745

9828

14,317

 

Non-cancer

3010

18,055

8991

85,683

 

Total

6300/10%

37,800/60%e

18,819/30%

100,000

Model-5%-SL

Cancer

1645

9828

14,317

 

Non-cancer

1505

8991

85,683

 

Total

3150/5%

18,819/30%

100,000

Model-10%-SL

Cancer

3290

9828

14,317

 

Non-cancer

3010

8991

85,683

 

Total

6300/10%

18,819/30%

100,000

Model-70%-SL

Cancer

23,035

9828

14,317

 

Non-cancer

21,065

8991

85,683

 

Total

44,100/70%f

18,819/30%

100,000

  1. aThe labels of the patches are ignored.
  2. b–fBecause the number of patches from each WSI is not the same, the number of patches estimated based on the proportion of extraction is approximate.