Table 2 Summary of the optimized neural network architecture with layers, output shape (OS), number of parameters (NP), activation function (AF), number of filters (NF), kernel size (KS), and number of neurons (NN).
Layers (type) | OS | NP | AF | NF | KS | NN |
|---|---|---|---|---|---|---|
First hidden convolutional layer (1D) | (None, 103, 90) | 360 | relu | 90 | 3 | ×  |
Second hidden convolutional layer (1D) | (None, 103, 70) | 18,970 | relu | 70 | 3 | ×  |
Maximum pooling layer | (None, 51, 70) | 0 | ×  | ×  | ×  | ×  |
Flatten layer | (None, 3570) | 0 | ×  | ×  | ×  | ×  |
First hidden dense layer | (None, 512) | 1,828,352 | relu | ×  | ×  | 512 |
Second hidden dense layer | (None, 512) | 262,656 | relu | ×  | ×  | 512 |
Third hidden dense layer | (None, 512) | 262,656 | relu | ×  | ×  | 512 |
Dense output layer | (None, 13) | 6669 | Linear | ×  | ×  | 13 |