Table 1 Performance of different methods in terms of RMSE.
From: A federated graph neural network framework for privacy-preserving personalization
Methods | Flixster | Douban | Yahoo | ML-100K | ML-1M | ML-10M |
|---|---|---|---|---|---|---|
PMF | 1.370 ± 0.011 | 0.893 ± 0.002 | 26.7 ± 0.529 | 0.970 ± 0.005 | 0.885 ± 0.007 | 0.855 ± 0.0006 |
SVD++ | 1.150 ± 0.008 | 0.865 ± 0.002 | 24.8 ± 0.498 | 0.948 ± 0.004 | 0.866 ± 0.004 | 0.833 ± 0.0004 |
GRALS | 1.296 ± 0.009 | 0.840 ± 0.002 | 37.9 ± 0.786 | 0.933 ± 0.002 | 0.846 ± 0.005 | 0.811 ± 0.0002 |
sRGCNN | 1.170 ± 0.007 | 0.805 ± 0.002 | 22.8 ± 0.482 | 0.921 ± 0.003 | 0.839 ± 0.003 | 0.785 ± 0.0003 |
GC-MC | 0.943 ± 0.006 | 0.736 ± 0.001 | 20.4 ± 0.361 | 0.906 ± 0.001 | 0.830 ± 0.001 | 0.778 ± 0.0001 |
PinSage | 0.945 ± 0.005 | 0.732 ± 0.001 | 21.0 ± 0.332 | 0.914 ± 0.002 | 0.840 ± 0.002 | 0.790 ± 0.0002 |
NGCF | 0.954 ± 0.004 | 0.742 ± 0.001 | 20.9 ± 0.370 | 0.916 ± 0.002 | 0.833 ± 0.002 | 0.779 ± 0.0003 |
GAT | 0.952 ± 0.005 | 0.737 ± 0.001 | 21.2 ± 0.334 | 0.913 ± 0.001 | 0.835 ± 0.001 | 0.784 ± 0.0004 |
FCF | 1.064 ± 0.008 | 0.823 ± 0.002 | 22.9 ± 0.389 | 0.957 ± 0.002 | 0.874 ± 0.005 | 0.847 ± 0.0007 |
FedMF | 1.059 ± 0.006 | 0.817 ± 0.002 | 22.2 ± 0.349 | 0.948 ± 0.002 | 0.872 ± 0.004 | 0.841 ± 0.0005 |
FedPerGNN | 0.980 ± 0.006 | 0.775 ± 0.001 | 20.7 ± 0.325 | 0.910 ± 0.001 | 0.839 ± 0.003 | 0.793 ± 0.0002 |