Table 1 Molecular structures of the PANm-b-PPEGMAn intermediates and PAOm-b-PPEGMAn products with different block ratios.

From: Multi-scale computer-aided design and photo-controlled macromolecular synthesis boosting uranium harvesting from seawater

Entry

Intermediates

Products

\({M}_{{{{{{\rm{n}}}}}},{{{{{\rm{PAN}}}}}}}^{[{{{{{\rm{a}}}}}}]}\)

\({M}_{{{{{{\rm{n}}}}}},{{{{{\rm{PAO}}}}}}}^{[{{{{{\rm{b}}}}}}]}\)

\({M}_{{{{{{\rm{n}}}}}},{{{{{\rm{PPEGMA}}}}}}}^{[{{{{{\rm{c}}}}}}]}\)

Block ratio[d], n/m

0

PAN

PAO

90,000

146,000

0

0

1

PANm-b-PPEGMAn1

PAOm-b-PPEGMAn1

90,000

146,000

27,000

0.05

2

PANm-b-PPEGMAn2

PAOm-b-PPEGMAn2

90,000

146,000

43,000

0.08

3

PANm-b-PPEGMAn3

PAOm-b-PPEGMAn3

90,000

146,000

85,000

0.17

4

PANm-b-PPEGMAn4

PAOm-b-PPEGMAn4

90,000

146,000

117,000

0.23

  1. aMolecular weight was determined by GPC using DMF containing 10 mmol/L LiBr as eluent.
  2. bMolecular weight was determined by equation \({M}_{{{{{{\rm{n}}}}}},{{{{{\rm{PAO}}}}}}}={M}_{{{{{{\rm{n}}}}}},{{{{{\rm{PAN}}}}}}}\times \frac{[{{{{{\rm{AO}}}}}}]}{[{{{{{\rm{AN}}}}}}]}=90,000\times \frac{86}{53}\).
  3. cMolecular weight was determined by 1H NMR. [d] Block ratio n/m was determined by 1H NMR.
  4. dBlock ratio n/m was determined by 1H NMR.