Table 1 Scaling exponents θJ and θQ for prototypical dynamical models

From: Impact of basic network motifs on the collective response to perturbations

Model

Dynamical Equation

θJ

θQ

Regulatory (\({\mathbb{R}}\))

\(\dot{{x}_{i}}(t)=-B{x}_{i}^{a}(t)+\alpha \mathop{\sum }\nolimits_{j=1}^{N}{A}_{ji}\frac{{x}_{j}^{b}(t)}{1+{x}_{j}^{b}(t)}\)

\(\frac{1}{a}-1\)

\(-\frac{b}{a}\)

Human (\({\mathbb{H}}\))

\(\dot{{x}_{i}}(t)=-B{x}_{i}^{a+b}(t)+\alpha {x}_{i}^{b}(t)\mathop{\sum }\nolimits_{j=1}^{N}{A}_{ji}\left({y}_{0}-{x}_{j}^{-c}(t)\right)\)

\(\frac{1-b}{a}-1\)

\(-\frac{c}{a}\)

Epidemics (\({\mathbb{E}}\))

\(\dot{{x}_{i}}(t)=-B{x}_{i}(t)+\alpha \left(1-{x}_{i}(t)\right)\mathop{\sum }\nolimits_{j=1}^{N}{A}_{ji}{x}_{j}(t)\)

− 1

− 1

Mutualistic (\({\mathbb{M}}\))

\(\dot{{x}_{i}}(t)=B{x}_{i}(t)\left(1-\frac{{x}_{i}^{a}(t)}{C}\right)+\alpha {x}_{i}(t)\mathop{\sum }\nolimits_{j=1}^{N}{A}_{ji}\frac{{x}_{j}(t)}{1+{x}_{j}(t)}\)

− 1

\(-\frac{1}{a}\)

Population (\({\mathbb{P}}\))

\(\dot{{x}_{i}}(t)=-B{x}_{i}^{a}(t)+\alpha \mathop{\sum }\nolimits_{j=1}^{N}{A}_{ji}{x}_{j}^{b}(t)\)

\(\frac{1}{a}-1\)

\(\frac{b}{a}\)

Biochemical (\({\mathbb{B}}\))

\(\dot{{x}_{i}}(t)=B-C{x}_{i}(t)-\alpha {x}_{i}(t)\mathop{\sum }\nolimits_{j=1}^{N}{A}_{ji}{x}_{j}(t)\)

− 1

− 1

Inhibitory (\({\mathbb{I}}\))

\(\dot{{x}_{i}}(t)=-B{x}_{i}(t){\left(1-\frac{{x}_{i}(t)}{C}\right)}^{2}+\alpha {x}_{i}(t)\mathop{\sum }\nolimits_{j=1}^{N}{A}_{ji}{x}_{j}(t)\)

− 1

\(\frac{1}{2}\)