Fig. 2: Simulation of temperature evolution of the sample. | Nature Communications

Fig. 2: Simulation of temperature evolution of the sample.

From: Electron diffraction of deeply supercooled water in no man’s land

Fig. 2

a Simulation of the temperature evolution of the sample (black) under irradiation with a shaped microsecond laser pulse (green). The sample is first heated above the melting point and then rapidly cooled to the desired temperature in no man’s land by reducing the laser power. Once the temperature has stabilized, we capture a diffraction pattern with a 6 µs electron pulse (blue). b Simulations show that this temperature (black circles) increases linearly with laser power. It only starts to level off above ~260 K, where evaporative cooling becomes important. The black line corresponds to a spline of the simulated data points, while the blue line is a linear fit. The inset shows diffraction patterns recorded over a range of temperatures. Scale bar, 2 Å−1.

Back to article page