Table 1 Candidate substrate materials for the graphene-insulator heterostructure systems

From: Synergistic correlated states and nontrivial topology in coupled graphene-insulator heterostructures

Materials

ϵr

ECBM

EVBM

m*/m0

gv

rs

AgScP2S6 (bi)

3.67

0.07 eV

−1.89 eV

3.94

6

683.4

AgScP2Se6 (bi)

4.06

0.15 eV

−1.37 eV

2.63

6

412.8

IrBr3 (bi)

6.53

0.23 eV

−1.43 eV

8.08

2

262.7

IrI3 (bi)

7.59

0.33 eV

−0.95 eV

1.76

2

49.1

YI3 (tri)

3.45

0.53 eV

−2.1 eV

2.12

1

65.3

YBr3 (tri)

6.78

0.68 eV

−3.15 eV

2.76

1

43.3

ReSe2 (bi)

6.38

0.32 eV

−0.83 eV

1.82

2

60.7

ScOCl (bi)

5.27

0.21 eV

−4.04 eV

3.29

1

66.2

PbO (bi)

8.47

2.02 eV

−0.03 eV

11.89

4

595.8

CrI3 (bi)

3.00

−0.32 eV

−1.58 eV

2.02

2

142.8

CrOCl (bi)

3–4

−0.13 eV

−3.26 eV

1.31

2

55.7–74.2

WS2 (tri,quad)

3.63

0–0.08 eV

−1.01 – −0.97 eV

1.16

6

201–203

WSe2 (tri,quad)

4.07

0.27–0.47 eV

−0.65 – −0.52 eV

0.53

6

87.4

MoSe2 (bi, tri, quad)

7.29

−0.01–0.31 eV

−0.97 – −0.86 eV

0.73–0.77

6

66–70

MoTe2 (bi, tri, quad)

6.75

0.31–0.42 eV

−0.54 – −0.47 eV

0.7–0.75

6

68–73

  1. The dielectric constants ϵr64,65,66, conduction band minimum position (ECBM), valence band maximum position (EVBM), the corresponding effective mass m* at the band edge that is closer to the Dirac point (set to zero) in energy, and the dimensionless Wigner-Seitz radius \({r}_{s}={g}_{v}{m}^{*}/\sqrt{\pi n}{\epsilon }_{r}{m}_{0}{a}_{{{{{{{{\rm{B}}}}}}}}}^{0}\) (\({a}_{{{{{{{{\rm{B}}}}}}}}}^{0}\) is the Bohr radius and m0 is the bare electron mass, gv is the valley degeneracy) estimated under a small doping concentration n = 1012 cm−2, are presented. Here bi and tri stand for bilayer and trilayer systems, respectively.