Table 2 Comparison of the linear probing evaluation of the learned representations against fully supervised methods20
From: CLOOME: contrastive learning unlocks bioimaging databases for queries with chemical structures
Type | Method | AUC | F1 | AUC > 0.9 | AUC > 0.8 | AUC > 0.7 |
|---|---|---|---|---|---|---|
Linear probing | CLOOME | 0.714 ± 0.20 | 0.395 ± 0.32 | 57 | 84 | 109 |
CellProfiler | 0.655 ± 0.20 | 0.273 ± 0.32 | 35 | 63 | 84 | |
Supervised | ResNet | 0.731 ± 0.19 | 0.508 ± 0.30 | 68 | 94 | 119 |
DenseNet | 0.730 ± 0.19 | 0.530 ± 0.30 | 61 | 98 | 121 | |
GapNet | 0.725 ± 0.19 | 0.510 ± 0.29 | 63 | 94 | 117 | |
MIL-Net | 0.711 ± 0.18 | 0.445 ± 0.32 | 61 | 81 | 105 | |
M-CNN | 0.705 ± 0.19 | 0.482 ± 0.31 | 57 | 78 | 105 | |
SC-CNN | 0.705 ± 0.20 | 0.362 ± 0.29 | 61 | 83 | 109 | |
FNN | 0.675 ± 0.20 | 0.361 ± 0.31 | 55 | 71 | 90 |