Table 1 Summary of pairing states in spin-polarized flat bands

From: Nodal band-off-diagonal superconductivity in twisted graphene superlattices

IR of D6

\({{{\Delta }}}_{{{{{{{{\boldsymbol{k}}}}}}}},\eta }=-{{{\Delta }}}_{-{{{{{{{\boldsymbol{k}}}}}}}},-\eta }^{T}\)

nodes

IR of C6

A1

\({\sigma }_{y}{\chi }_{\eta \cdot {{{{{{{\boldsymbol{k}}}}}}}}},{\chi }_{{C}_{2x}{{{{{{{\boldsymbol{k}}}}}}}}}=-{\chi }_{{{{{{{{\boldsymbol{k}}}}}}}}}\)

ln/pt or ln

A

A2

\({\sigma }_{y}{\chi }_{\eta \cdot {{{{{{{\boldsymbol{k}}}}}}}}},{\chi }_{{C}_{2x}{{{{{{{\boldsymbol{k}}}}}}}}}={\chi }_{{{{{{{{\boldsymbol{k}}}}}}}}}\)

ln/n

A

E2(1, 0)

σyYηk

ln/ln or pt

E2(1, 0)

E2(0, 1)

σyXηk

ln/ln or pt

E2(1, 0)

E2(1, i)

\({\sigma }_{y}({X}_{\eta \cdot {{{{{{{\boldsymbol{k}}}}}}}}}+i\,{Y}_{\eta \cdot {{{{{{{\boldsymbol{k}}}}}}}}})\)

ln/ln or n

E2(1, i)

B1

\(\eta {\hat{\chi }}_{\eta \cdot {{{{{{{\boldsymbol{k}}}}}}}}},{\sigma }_{z}{\hat{\chi }}_{{C}_{2x}{{{{{{{\boldsymbol{k}}}}}}}}}{\sigma }_{z}={\hat{\chi }}_{{{{{{{{\boldsymbol{k}}}}}}}}}\)

n

B

B2

\(\eta {\hat{\chi }}_{\eta \cdot {{{{{{{\boldsymbol{k}}}}}}}}},{\sigma }_{z}{\hat{\chi }}_{{C}_{2x}{{{{{{{\boldsymbol{k}}}}}}}}}{\sigma }_{z}=-{\hat{\chi }}_{{{{{{{{\boldsymbol{k}}}}}}}}}\)

pt

B

E1(1, 0)

\(\eta {\hat{X}}_{\eta \cdot {{{{{{{\boldsymbol{k}}}}}}}}}\)

pt

E1(1, 0)

E1(0, 1)

\(\eta {\hat{Y}}_{\eta \cdot {{{{{{{\boldsymbol{k}}}}}}}}}\)

pt

E1(1, 0)

E1(1, i)

\(\eta ({\hat{X}}_{\eta \cdot {{{{{{{\boldsymbol{k}}}}}}}}}+i{\hat{Y}}_{\eta \cdot {{{{{{{\boldsymbol{k}}}}}}}}})\)

n

E1(1, i)

  1. Here χk (\({\hat{\chi }}_{{{{{{{{\boldsymbol{k}}}}}}}}}\)) is a real-valued (real and symmetric 2 × 2 matrix-valued) MBZ-periodic function invariant under C3z. Furthermore, Xk and Yk (\({\hat{X}}_{{{{{{{{\boldsymbol{k}}}}}}}}}\) and \({\hat{Y}}_{{{{{{{{\boldsymbol{k}}}}}}}}}\)) transform as x and y under D3, generated by C3z and C2x, while also being real (and symmetric). The third column indicates the type of nodes—line (ln), point (pt), or none (n)—on a generic Fermi surface for sufficiently small/large order-parameter magnitudes; options separated by “or” indicates that this depends on the normal-state band splitting, see main text. The last column shows which states merge when D0 ≠ 0, reducing the point group from D6 to C6.