Table 1 Variable importance for how each parameter type influences the deforestation emission baseline, as well as statistical tests (one-way ANOVA and Tukey’s HSD post-hoc) comparing relative variabilities between the different levels of each parameter, for n = 2794 jurisdictions

From: Uncertainties in deforestation emission baseline methodologies and implications for carbon markets

Parameter

Variable Importance

Statistical tests

Mean

SE

One-Way ANOVA

Tukey’s HSD post-hoc

Deforestation rate

Projection approach

10.2

0.18

F(6,19524) = 1678, p < 0.01

All pairs p < 0.05, except global-regional_s (p = 0.1) and global_s-regional_s (p = 0.07)

Forest dataset

4.41

0.14

F(4,12791) = 430, p < 0.01

All pairs p < 0.05, except hansen15-30 (p = 0.97)

Historical reference years

2.22

0.16

F(10,30749) = 82, p < 0.01

All pairs p < 0.05, except 7-8, 8-9, 9-10, 9-11, 10-11, 10-12, 11-12, 11-13, 12-13, 12-14, 13-14, 13-15, 14-15.

Carbon

Forest dataset

0.74

0.04

F(4,13565) = 2.5, p = 0.042

All pairs p > 0.05.

AGB

1.31

0.04

F(2,8379) = 8.4, p < 0.01

gedi-soto & gedi-spawn (p < 0.01); soto-spawn (p = 0.99)

BGB

0.50

0.02

F(2,8385) = 26.8, p < 0.01

ipcc-soto & soto-spawn (p < 0.01); ipcc-spawn (p = 0.98)

SOC

0.23

0.02

F(1,5594) = 0.3, p = 0.556

esdac-olm (p = 0.556)

  1. aBold indicates statistically-significant values