Table 1 Test macro-average F1-Scores for neural networks trained in datasets with synthetic background biasa
Model | Biased test maF1 | Standard test maF1 | Deceiving bias test maF1 |
|---|---|---|---|
Stanford dogs with synthetic background bias | |||
ISNet | 0.548 ± 0.035 | 0.553 ± 0.035 | 0.548 ± 0.035 |
ISNet Grad*Input | 0.55 ± 0.034 | 0.545 ± 0.034 | 0.545 ± 0.034 |
Standard classifier | 0.926 ± 0.019 | 0.419 ± 0.034 | 0.071 ± 0.017 |
Segmentation-classification pipeline | 0.519 ± 0.035 | 0.519 ± 0.035 | 0.518 ± 0.035 |
Multi-task U-Net | 0.522 ± 0.036 | 0.455 ± 0.036 | 0.38 ± 0.035 |
AG-Sononet | 0.956 ± 0.015 | 0.214 ± 0.027 | 0.019 ± 0.009 |
Extended GAIN | 0.935 ± 0.017 | 0.445 ± 0.034 | 0.1 ± 0.019 |
RRR | 0.851 ± 0.025 | 0.548 ± 0.034 | 0.299 ± 0.025 |
Vision transformer (ViT-B/16) | 0.637 ± 0.034 | 0.419 ± 0.032 | 0.399 ± 0.032 |
Standard classifier reference (trained without synthetic bias) | – | 0.556 ± 0.035 | – |
COVID-19 detection with synthetic background bias | |||
ISNet | 0.775 ± 0.008 | 0.775 ± 0.008 | 0.775 ± 0.008 |
ISNet Grad*Input | 0.542 ± 0.01 | 0.544 ± 0.01 | 0.417 ± 0.01 |
Standard classifier | 0.775 ± 0.008 | 0.434 ± 0.01 | 0.195 ± 0.004 |
Segmentation-classification pipeline | 0.618 ± 0.009 | 0.619 ± 0.009 | 0.618 ± 0.009 |
Multi-task U-Net | 0.667 ± 0.01 | 0.341 ± 0.007 | 0.156 ± 0.004 |
AG-Sononet | 0.943 ± 0.005 | 0.386 ± 0.008 | 0.047 ± 0.003 |
Extended GAIN | 0.41 ± 0.009 | 0.306 ± 0.006 | 0.219 ± 0.003 |
RRR | 0.464 ± 0.009 | 0.458 ± 0.008 | 0.426 ± 0.008 |
Vision transformer (ViT-B/16) | 0.685 ± 0.009 | 0.496 ± 0.009 | 0.327 ± 0.009 |
Standard classifier reference (trained without synthetic bias) | – | 0.546 ± 0.01 | – |
Facial attribute estimation with synthetic background bias | |||
ISNet | 0.807 ± 0.027 | 0.807 ± 0.027 | 0.807 ± 0.027 |
ISNet Grad*Input | 0.496 ± 0.02 | 0.499 ± 0.02 | 0.503 ± 0.021 |
Standard classifier | 0.974 ± 0.012 | 0.641 ± 0.054 | 0.398 ± 0.019 |
Segmentation-classification pipeline | 0.794 ± 0.031 | 0.794 ± 0.031 | 0.794 ± 0.031 |
Multi-task U-Net | 0.985 ± 0.008 | 0.665 ± 0.129 | 0.351 ± 0.015 |
AG-Sononet | 0.985 ± 0.009 | 0.616 ± 0.094 | 0.326 ± 0.016 |
Extended GAIN | 0.886 ± 0.023 | 0.773 ± 0.034 | 0.633 ± 0.03 |
RRR | 0.794 ± 0.024 | 0.77 ± 0.032 | 0.557 ± 0.025 |
Vision transformer (ViT-B/16) | 0.675 ± 0.023 | 0.645 ± 0.03 | 0.531 ± 0.023 |
Standard classifier reference (trained without synthetic bias) | – | 0.802 ± 0.028 | – |