Table 5 Performance metrics for the deep neural networks in tuberculosis detection (o.o.d. evaluation)a

From: Improving deep neural network generalization and robustness to background bias via layer-wise relevance propagation optimization

Model and metric

Normal

Tuberculosis

Mean (macro-average)

ISNet precision

0.744 ± 0.045

0.734 ± 0.043

0.739 ± 0.044

U-Net+DenseNet121 precision

0.63 ± 0.061

0.573 ± 0.043

0.601 ± 0.052

DenseNet121 precision

0.578 ± 0.055

0.564 ± 0.046

0.571 ± 0.05

Multi-task U-Net precision

0.515 ± 0.048

0.539 ± 0.053

0.527 ± 0.05

AG-Sononet precision

0.731 ± 0.06

0.599 ± 0.041

0.665 ± 0.05

Extended GAIN precision

0.576 ± 0.04

0.766 ± 0.06

0.671 ± 0.05

RRR precision

0.663 ± 0.049

0.664 ± 0.046

0.663 ± 0.048

Vision Transformer (ViT-B/16) precision

0.52 ± 0.044

0.56 ± 0.059

0.54 ± 0.052

ISNet recall

0.714 ± 0.046

0.762 ± 0.042

0.738 ± 0.044

U-Net+DenseNet121 recall

0.409 ± 0.05

0.768 ± 0.042

0.589 ± 0.046

DenseNet121 recall

0.479 ± 0.05

0.659 ± 0.047

0.569 ± 0.048

Multi-task U-Net recall

0.586 ± 0.05

0.468 ± 0.05

0.527 ± 0.05

AG-Sononet recall

0.406 ± 0.05

0.855 ± 0.035

0.631 ± 0.042

Extended GAIN recall

0.883 ± 0.032

0.372 ± 0.048

0.627 ± 0.04

RRR recall

0.642 ± 0.049

0.685 ± 0.046

0.663 ± 0.048

Vision Transformer (ViT-B/16) recall

0.679 ± 0.047

0.395 ± 0.049

0.537 ± 0.048

ISNet F1-Score

0.729 ± 0.046

0.748 ± 0.043

0.738 ± 0.044

U-Net+DenseNet121 F1-Score

0.496 ± 0.056

0.656 ± 0.044

0.576 ± 0.05

DenseNet121 F1-Score

0.524 ± 0.052

0.608 ± 0.047

0.566 ± 0.05

Multi-task U-Net F1-Score

0.548 ± 0.049

0.501 ± 0.052

0.524 ± 0.05

AG-Sononet F1-Score

0.522 ± 0.057

0.704 ± 0.04

0.613 ± 0.048

Extended GAIN F1-Score

0.697 ± 0.039

0.501 ± 0.056

0.599 ± 0.048

RRR F1-Score

0.652 ± 0.049

0.674 ± 0.046

0.663 ± 0.048

Vision Transformer (ViT-B/16) F1-Score

0.589 ± 0.046

0.463 ± 0.054

0.526 ± 0.05

ISNet AUC

0.809 ± 0.031

0.809 ± 0.031

0.809 ± 0.031

U-Net+DenseNet121 AUC

0.667 ± 0.039

0.667 ± 0.039

0.667 ± 0.039

DenseNet121 AUC

0.576 ± 0.04

0.576 ± 0.04

0.576 ± 0.04

Multi-task U-Net AUC

0.549 ± 0.041

0.549 ± 0.041

0.549 ± 0.041

AG-Sononet AUC

0.717 ± 0.037

0.717 ± 0.037

0.717 ± 0.037

Extended GAIN AUC

0.676 ± 0.038

0.676 ± 0.038

0.676 ± 0.038

RRR AUC

0.728 ±  0.036

0.728 ±  0.036

0.728 ±  0.036

Vision Transformer (ViT-B/16) AUC

0.558 ± 0.041

0.558 ± 0.041

0.558 ± 0.041

  1. aThe cells display the metrics’ mean and 95% confidence intervals.