Table 2 Machine learning classifiers’ and ensemble models’ performances
From: A Machine Learning-Driven Virtual Biopsy System For Kidney Transplant Patients
Models | Hand and Till’sMulti-AUC | Mean Absolute Error | ||
|---|---|---|---|---|
Arteriosclerosis(cv Banff score) | Arteriolar hyalinosis(ah Banff score) | Interstitial fibrosis tubular atrophy(IFTA Banff score) | Glomerulosclerosis in percentage | |
Random Forest | 0.836 | 0.774 | 0.830 | 5.807 |
Gradient Boosting Machine | 0.807 | 0.750 | 0.805 | 6.486 |
Extreme Gradient Boosting Tree | 0.830 | 0.767 | 0.827 | 5.768 |
Linear Discriminant Analysisa | 0.761 | 0.703 | 0.750 | -a |
Model Averaged Neural Network | 0.777 | 0.720 | 0.757 | 6.573 |
Multinomial Logistic Regressiona | 0.763 | 0.706 | 0.753 | -a |
Ensemble Model | 0.833 | 0.773 | 0.830 | 5.999 |