Table 2 Algorithm of dynamic proactive control method
Inputs | Early warning indicators of impacted gas turbines (\({{{{{\rm{SAE}}}}}}{{{{{{\rm{T}}}}}}}_{i}\), \({{{{{\rm{AL}}}}}}{{{{{{\rm{P}}}}}}}_{0,{i}}\)), parameters and variables of the power system |
Parameters | Maximum iteration times (\({{{{{\rm{ite}}}}}}{{{{{{\rm{r}}}}}}}_{\max }\)), control cost tolerance (\({{{{{\rm{tol}}}}}}\)), global control time (\(T\)), time-set ratio (\(\alpha\)) |
Step 1 | Let the iteration number \(k=0\), and the proactive control time \({T}_{i}={{{{{\rm{SAE}}}}}}{{{{{{\rm{T}}}}}}}_{i}\) for each impacted gas turbine \(i\). |
Step 2 | Solve the linear programming problem (11)-(19) and get the proactive control strategy (\({P}_{{{{{{\rm{d}}}}}},{i},{t}}\), \({P}_{{{{{{\rm{g}}}}}},{i},{t}}\)) with the control cost \({y}_{{{{{{\rm{c}}}}}},k}\). |
Step 3 | Judge whether the control cost is acceptable or the remaining ALP for each impacted gas turbine is zero, that is, \({y}_{{{{{{\rm{c}}}}}},k}\, < \;{{{{{\rm{tol}}}}}}\) or \({{{{{\rm{AL}}}}}}{{{{{{\rm{P}}}}}}}_{i,{T}_{i}}=0,\,\forall i\in {{{{{{\bf{S}}}}}}}_{{{{{{\rm{IG}}}}}}}\). If yes, go to the output step. |
Step 4 | Let \({T}_{{{{{{\rm{set}}}}}},i}=\alpha {T}_{i}\) and calculate \({{{{{\rm{AE}}}}}}{{{{{{\rm{T}}}}}}}_{i,{T}_{{{{{{\rm{set}}}}}},i}}\) of each impacted gas turbine. |
Step 5 | Let \({T}_{i}=\max \left({{{{{\rm{AE}}}}}}{{{{{{\rm{T}}}}}}}_{i}\left({T}_{{{{{{\rm{set}}}}}},i}\right),\,{T}_{i}\right)\). |
Step 6 | Let \(k=k+1\). |
Step 7 | Judge whether the iteration number \(k\, < \,{{{{{\rm{ite}}}}}}{{{{{{\rm{r}}}}}}}_{\max }\). If yes, return to step 2. |
Outputs | Proactive control strategy (\({P}_{{{{{{\rm{d}}}}}},{i},{t}}\), \({P}_{{{{{{\rm{g}}}}}},{i},{t}}\)) |