Table 2 Test accuracy and spiking sparsity for a VGG16 architecture
From: High-performance deep spiking neural networks with 0.3 spikes per neuron
Dataset | Classes | Test accuracy [%] w/o FT | Test accuracy [%] w/ FT | SNN | ||
|---|---|---|---|---|---|---|
ReLU | SNN | ReLU | SNN | Sparsity | ||
CIFAR10 | 10 | 93.5967 | 93.59 | 93.69 ± 0.02 | 93.69 ± 0.02 | 0.38 |
CIFAR1052 | 10 | – | – | – | 91.90 | 0.24 |
CIFAR1053 | 10 | – | – | – | 92.68 | 0.62 |
CIFAR10 + L1 | 10 | 92.82 | 92.82 | 93.28 ± 0.02 | 93.27 ± 0.02 | 0.20 |
CIFAR100 | 100 | 70.4867 | 70.48 | 72.23 ± 0.06 | 72.24 ± 0.06 | 0.38 |
CIFAR10052 | 100 | – | – | – | 65.98 | 0.28 |
CIFAR100 + L1 | 100 | 69.33 | 69.33 | 72.20 ± 0.04 | 72.21 ± 0.04 | 0.24 |
PLACES365 | 365 | 52.6965 | 52.69 | 53.86 ± 0.02 | 53.86 ± 0.02 | 0.54 |
PLACES365 + L1 | 365 | 48.67 | 48.67 | 48.88 ± 0.06 | 48.85 ± 0.06 | 0.27 |