Table 1 The lattice stabilization energy can be obtained from the electron-lattice coupling g and the elastic deformation K through a simple Landau free-energy expansion
From: Spectroscopic signatures and origin of hidden order in Ba2MgReO6
k | θ | g | K | \({F}_{{{{\rm{latt}}}}}^{{{{\rm{sat}}}}}\) |
|---|---|---|---|---|
(eV/Å) | (eV/Å2) | (meV/f.u.) | ||
[001] | x2−y2 | 2.52 | 19.9 | −10.0 |
[000] | xy | \(\left(\begin{array}{c}0.76\\ 0.92\end{array}\right)\) | \(\left(\begin{array}{cc}9.5&3.8\\ 3.8&21.8\end{array}\right)\) | −2.5 |
[000] | z2 | \(\left(\begin{array}{c}1.93\\ 2.48\end{array}\right)\) | \(\left(\begin{array}{cc}18.4&13.1\\ 13.1&21.1\end{array}\right)\) | −9.6 |