Table 1 The lattice stabilization energy can be obtained from the electron-lattice coupling g and the elastic deformation K through a simple Landau free-energy expansion

From: Spectroscopic signatures and origin of hidden order in Ba2MgReO6

k

θ

g

K

\({F}_{{{{\rm{latt}}}}}^{{{{\rm{sat}}}}}\)

  

(eV/Å)

(eV/Å2)

(meV/f.u.)

[001]

x2y2

2.52

19.9

−10.0

[000]

xy

\(\left(\begin{array}{c}0.76\\ 0.92\end{array}\right)\)

\(\left(\begin{array}{cc}9.5&3.8\\ 3.8&21.8\end{array}\right)\)

−2.5

[000]

z2

\(\left(\begin{array}{c}1.93\\ 2.48\end{array}\right)\)

\(\left(\begin{array}{cc}18.4&13.1\\ 13.1&21.1\end{array}\right)\)

−9.6